A density evolution based framework for dirty paper code design using TCQ and multilevel LDPC codes

Yang Yang, Zixiang Xiong, Yu-chun Wu, Philipp Zhang
{"title":"A density evolution based framework for dirty paper code design using TCQ and multilevel LDPC codes","authors":"Yang Yang, Zixiang Xiong, Yu-chun Wu, Philipp Zhang","doi":"10.1109/ICC.2012.6363646","DOIUrl":null,"url":null,"abstract":"We propose a density evolution based dirty-paper code design framework that combines trellis coded quantization with multi-level low-density parity-check (LDPC) codes. Unlike existing design techniques based on Gaussian approximation and EXIT charts, the proposed framework tracks the empirically collected log-likelihood ratio (LLR) distributions at each iteration, and employs density evolution and differential evolution algorithms to design each LDPC component code. In order for the approximated LLR distributions obtained using density evolution to better match the true LLR distributions, a novel decorrelator is added to the decoder to make channel LLRs and check node LLRs almost independent of each other. Simulation results show that at 1 bit per sample transmission rate, the dirty-paper codes designed using the proposed method operate within 0.53 dB of the theoretical limit, reducing the best known result (with a 0.58 dB gap to the limit) by 0.05 dB at the same complexity and block length, while this improvement can be as large as 0.21 dB (corresponding to a 0.37 dB gap to the limit) when we use higher complexity encoder/decoder with longer block length.","PeriodicalId":331080,"journal":{"name":"2012 IEEE International Conference on Communications (ICC)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2012.6363646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose a density evolution based dirty-paper code design framework that combines trellis coded quantization with multi-level low-density parity-check (LDPC) codes. Unlike existing design techniques based on Gaussian approximation and EXIT charts, the proposed framework tracks the empirically collected log-likelihood ratio (LLR) distributions at each iteration, and employs density evolution and differential evolution algorithms to design each LDPC component code. In order for the approximated LLR distributions obtained using density evolution to better match the true LLR distributions, a novel decorrelator is added to the decoder to make channel LLRs and check node LLRs almost independent of each other. Simulation results show that at 1 bit per sample transmission rate, the dirty-paper codes designed using the proposed method operate within 0.53 dB of the theoretical limit, reducing the best known result (with a 0.58 dB gap to the limit) by 0.05 dB at the same complexity and block length, while this improvement can be as large as 0.21 dB (corresponding to a 0.37 dB gap to the limit) when we use higher complexity encoder/decoder with longer block length.
基于密度演化的脏纸码设计框架,采用TCQ和多级LDPC码
提出了一种基于密度演化的脏纸码设计框架,该框架结合了栅格编码量化和多级低密度奇偶校验(LDPC)码。与现有的基于高斯近似和EXIT图的设计技术不同,该框架在每次迭代时跟踪经验收集的对数似然比(LLR)分布,并采用密度进化和差分进化算法来设计每个LDPC组件代码。为了使利用密度演化得到的近似LLR分布能更好地匹配真实LLR分布,在解码器中加入了一种新的去相关器,使信道LLR和检查节点LLR几乎相互独立。仿真结果表明,每样1比特传输速率、脏纸编码设计中使用该方法操作0.53 dB的理论极限,减少最著名的结果(0.58 dB差距限制)0.05 dB在同一块长度和复杂性,而这种改善可能多达0.21 dB(对应于0.37 dB差距限制)当我们使用更高的复杂性和较长的块编码器/解码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信