Towards a bounded Pareto-coevolution archive

E. Jong
{"title":"Towards a bounded Pareto-coevolution archive","authors":"E. Jong","doi":"10.1109/CEC.2004.1331190","DOIUrl":null,"url":null,"abstract":"Convolution offers adaptive methods for the selection of tests used to evaluate individuals, but the resulting evaluation can be unstable. Recently, general archive-based coevolution methods have become available for which monotonic progress can be guaranteed. The size of these archives may grow indefinitely however, thus limiting their application potential. Here, we investigate how the size of an archive for Pareto-coevolution may be limited while maintaining reliability. The LAyered Pareto-Coevolution Archive (LAPCA) is presented, and investigated in experiments. LAPCA features a tunable degree of reliability, and is found to provide reliable progress in a difficult test problem while maintaining approximately constant archive sizes.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Convolution offers adaptive methods for the selection of tests used to evaluate individuals, but the resulting evaluation can be unstable. Recently, general archive-based coevolution methods have become available for which monotonic progress can be guaranteed. The size of these archives may grow indefinitely however, thus limiting their application potential. Here, we investigate how the size of an archive for Pareto-coevolution may be limited while maintaining reliability. The LAyered Pareto-Coevolution Archive (LAPCA) is presented, and investigated in experiments. LAPCA features a tunable degree of reliability, and is found to provide reliable progress in a difficult test problem while maintaining approximately constant archive sizes.
向着一个有限的帕累托共同进化档案
卷积为选择用于评估个体的测试提供了自适应的方法,但最终的评估可能是不稳定的。近年来,通用的基于档案的协同进化方法已经出现,这种方法可以保证单调的进化过程。然而,这些档案的大小可能会无限增长,从而限制了它们的应用潜力。在这里,我们研究了帕累托协同进化档案的大小如何在保持可靠性的同时受到限制。提出了分层pareto - co - evolution Archive (LAPCA),并进行了实验研究。LAPCA具有可调的可靠性,并且可以在困难的测试问题中提供可靠的进展,同时保持大约恒定的存档大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信