On the Effectiveness of Vision Transformers for Zero-shot Face Anti-Spoofing

Anjith George, S. Marcel
{"title":"On the Effectiveness of Vision Transformers for Zero-shot Face Anti-Spoofing","authors":"Anjith George, S. Marcel","doi":"10.1109/IJCB52358.2021.9484333","DOIUrl":null,"url":null,"abstract":"The vulnerability of face recognition systems to presentation attacks has limited their application in security-critical scenarios. Automatic methods of detecting such malicious attempts are essential for the safe use of facial recognition technology. Although various methods have been suggested for detecting such attacks, most of them over-fit the training set and fail in generalizing to unseen attacks and environments. In this work, we use transfer learning from the vision transformer model for the zero-shot anti-spoofing task. The effectiveness of the proposed approach is demonstrated through experiments in publicly available datasets. The proposed approach outperforms the state-of-the-art methods in the zero-shot protocols in the HQ-WMCA and SiW-M datasets by a large margin. Besides, the model achieves a significant boost in cross-database performance as well.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

The vulnerability of face recognition systems to presentation attacks has limited their application in security-critical scenarios. Automatic methods of detecting such malicious attempts are essential for the safe use of facial recognition technology. Although various methods have been suggested for detecting such attacks, most of them over-fit the training set and fail in generalizing to unseen attacks and environments. In this work, we use transfer learning from the vision transformer model for the zero-shot anti-spoofing task. The effectiveness of the proposed approach is demonstrated through experiments in publicly available datasets. The proposed approach outperforms the state-of-the-art methods in the zero-shot protocols in the HQ-WMCA and SiW-M datasets by a large margin. Besides, the model achieves a significant boost in cross-database performance as well.
视觉变压器对零射人脸抗欺骗的有效性研究
人脸识别系统易受表示攻击的影响,限制了其在安全关键场景中的应用。检测此类恶意企图的自动方法对于安全使用面部识别技术至关重要。尽管已经提出了各种方法来检测此类攻击,但大多数方法都过于拟合训练集,并且无法推广到未见过的攻击和环境。在这项工作中,我们使用视觉变压器模型的迁移学习来完成零射击反欺骗任务。通过公开可用数据集的实验证明了所提出方法的有效性。所提出的方法在红旗- wmca和SiW-M数据集上优于最先进的零射击协议方法。此外,该模型还实现了跨数据库性能的显著提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信