Face Recognition and Semantic Features

Huiyu Zhou, Yuanzhuo Yuan, Chunmei Shi
{"title":"Face Recognition and Semantic Features","authors":"Huiyu Zhou, Yuanzhuo Yuan, Chunmei Shi","doi":"10.4018/978-1-60566-188-9.CH003","DOIUrl":null,"url":null,"abstract":"The authors present a face recognition scheme based on semantic features' extraction from faces and tensor subspace analysis. These semantic features consist of eyes and mouth, plus the region outlined by three weight centres of the edges of these features. The extracted features are compared over images in tensor subspace domain. Singular value decomposition is used to solve the eigenvalue problem and to project the geometrical properties to the face manifold. They compare the performance of the proposed scheme with that of other established techniques, where the results demonstrate the superiority of the proposed method.","PeriodicalId":439960,"journal":{"name":"Semantic Mining Technologies for Multimedia Databases","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Mining Technologies for Multimedia Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60566-188-9.CH003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The authors present a face recognition scheme based on semantic features' extraction from faces and tensor subspace analysis. These semantic features consist of eyes and mouth, plus the region outlined by three weight centres of the edges of these features. The extracted features are compared over images in tensor subspace domain. Singular value decomposition is used to solve the eigenvalue problem and to project the geometrical properties to the face manifold. They compare the performance of the proposed scheme with that of other established techniques, where the results demonstrate the superiority of the proposed method.
人脸识别与语义特征
提出了一种基于人脸语义特征提取和张量子空间分析的人脸识别方案。这些语义特征由眼睛和嘴巴组成,再加上这些特征边缘的三个权重中心所勾勒的区域。提取的特征在张量子空间域中与图像进行比较。奇异值分解用于解决特征值问题,并将几何性质映射到面流形上。他们将所提出的方案的性能与其他已建立的技术进行了比较,结果表明了所提出方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信