How Bayesians Debug

Chao Liu, Zeng Lian, Jiawei Han
{"title":"How Bayesians Debug","authors":"Chao Liu, Zeng Lian, Jiawei Han","doi":"10.1109/ICDM.2006.83","DOIUrl":null,"url":null,"abstract":"Manual debugging is expensive. And the high cost has motivated extensive research on automated fault localization in both software engineering and data mining communities. Fault localization aims at automatically locating likely fault locations, and hence assists manual debugging. A number of fault localization algorithms have been developed in recent years, which prove effective when multiple failing and passing cases are available. However, we notice what is more commonly encountered in practice is the two-sample debugging problem, where only one failing and one passing cases are available. This problem has been either overlooked or insufficiently tackled in previous studies. In this paper, we develop a new fault localization algorithm, named BayesDebug, which simulates some manual debugging principles through a Bayesian approach. Different from existing approaches that base fault analysis on multiple passing and failing cases, BayesDebug only requires one passing and one failing cases. We reason about why BayesDebug fits the two- sample debugging problem and why other approaches do not. Finally, an experiment with a real-world program grep-2.2 is conducted, which exemplifies the effectiveness of BayesDebug.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Manual debugging is expensive. And the high cost has motivated extensive research on automated fault localization in both software engineering and data mining communities. Fault localization aims at automatically locating likely fault locations, and hence assists manual debugging. A number of fault localization algorithms have been developed in recent years, which prove effective when multiple failing and passing cases are available. However, we notice what is more commonly encountered in practice is the two-sample debugging problem, where only one failing and one passing cases are available. This problem has been either overlooked or insufficiently tackled in previous studies. In this paper, we develop a new fault localization algorithm, named BayesDebug, which simulates some manual debugging principles through a Bayesian approach. Different from existing approaches that base fault analysis on multiple passing and failing cases, BayesDebug only requires one passing and one failing cases. We reason about why BayesDebug fits the two- sample debugging problem and why other approaches do not. Finally, an experiment with a real-world program grep-2.2 is conducted, which exemplifies the effectiveness of BayesDebug.
贝叶斯算法是如何调试的
手动调试是昂贵的。而高成本也促使了软件工程和数据挖掘界对自动故障定位的广泛研究。故障定位旨在自动定位可能的故障位置,从而辅助人工调试。近年来发展了许多故障定位算法,这些算法在存在多个故障和通过的情况下是有效的。然而,我们注意到在实践中更常见的是双样本调试问题,其中只有一个失败和一个通过的情况可用。这一问题在以往的研究中要么被忽视,要么没有得到充分的解决。在本文中,我们开发了一种新的故障定位算法BayesDebug,它通过贝叶斯方法模拟了一些人工调试原理。与现有的基于多个通过和失败案例的故障分析方法不同,BayesDebug只需要一个通过和一个失败案例。我们解释了为什么BayesDebug适合双样本调试问题,而其他方法不适合的原因。最后,对真实世界的grep-2.2程序进行了实验,验证了BayesDebug的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信