EpiDeep

B. Adhikari, Xinfeng Xu, Naren Ramakrishnan, B. Prakash
{"title":"EpiDeep","authors":"B. Adhikari, Xinfeng Xu, Naren Ramakrishnan, B. Prakash","doi":"10.1145/3292500.3330917","DOIUrl":null,"url":null,"abstract":"Influenza leads to regular losses of lives annually and requires careful monitoring and control by health organizations. Annual influenza forecasts help policymakers implement effective countermeasures to control both seasonal and pandemic outbreaks. Existing forecasting techniques suffer from problems such as poor forecasting performance, lack of modeling flexibility, data sparsity, and/or lack of intepretability. We propose EpiDeep, a novel deep neural network approach for epidemic forecasting which tackles all of these issues by learning meaningful representations of incidence curves in a continuous feature space and accurately predicting future incidences, peak intensity, peak time, and onset of the upcoming season. We present extensive experiments on forecasting ILI (influenza-like illnesses) in the United States, leveraging multiple metrics to quantify success. Our results demonstrate that EpiDeep is successful at learning meaningful embeddings and, more importantly, that these embeddings evolve as the season progresses. Furthermore, our approach outperforms non-trivial baselines by up to 40%.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

Influenza leads to regular losses of lives annually and requires careful monitoring and control by health organizations. Annual influenza forecasts help policymakers implement effective countermeasures to control both seasonal and pandemic outbreaks. Existing forecasting techniques suffer from problems such as poor forecasting performance, lack of modeling flexibility, data sparsity, and/or lack of intepretability. We propose EpiDeep, a novel deep neural network approach for epidemic forecasting which tackles all of these issues by learning meaningful representations of incidence curves in a continuous feature space and accurately predicting future incidences, peak intensity, peak time, and onset of the upcoming season. We present extensive experiments on forecasting ILI (influenza-like illnesses) in the United States, leveraging multiple metrics to quantify success. Our results demonstrate that EpiDeep is successful at learning meaningful embeddings and, more importantly, that these embeddings evolve as the season progresses. Furthermore, our approach outperforms non-trivial baselines by up to 40%.
EpiDeep
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信