C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, Sachin Kumar, M. Pecht
{"title":"Model-based and data-driven prognosis of automotive and electronic systems","authors":"C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, Sachin Kumar, M. Pecht","doi":"10.1109/COASE.2009.5234108","DOIUrl":null,"url":null,"abstract":"Recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. Concomitantly, there is an increased trend towards the forecasting of system degradation through a prognostic process to fulfill the needs of customers demanding high vehicle availability. Prognosis is viewed as an add-on capability to diagnosis that assesses the current health of a system and predicts its remaining life based on sensed features that capture the gradual degradation in the operation of the vehicle. This paper discusses a hybrid model-based, data-driven and knowledge-based integrated diagnosis and prognosis framework, and applies it to automotive (suspension and battery systems) and on-board electronic systems.","PeriodicalId":386046,"journal":{"name":"2009 IEEE International Conference on Automation Science and Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2009.5234108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89
Abstract
Recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. Concomitantly, there is an increased trend towards the forecasting of system degradation through a prognostic process to fulfill the needs of customers demanding high vehicle availability. Prognosis is viewed as an add-on capability to diagnosis that assesses the current health of a system and predicts its remaining life based on sensed features that capture the gradual degradation in the operation of the vehicle. This paper discusses a hybrid model-based, data-driven and knowledge-based integrated diagnosis and prognosis framework, and applies it to automotive (suspension and battery systems) and on-board electronic systems.