Predicting Mechanical Property Plateau in Laser Polymer Powder Bed Fusion Additive Manufacturing via the Critical Coalescence Ratio

C. A. Chatham, M. Bortner, Blake N. Johnson, T. Long, C. Williams
{"title":"Predicting Mechanical Property Plateau in Laser Polymer Powder Bed Fusion Additive Manufacturing via the Critical Coalescence Ratio","authors":"C. A. Chatham, M. Bortner, Blake N. Johnson, T. Long, C. Williams","doi":"10.2139/ssrn.3805240","DOIUrl":null,"url":null,"abstract":"Abstract The state of the art in property-process relationships in the laser polymer powder bed fusion (LPPBF) subcategory of powder bed fusion (PBF) has derived relationships between the energy supplied and polymer thermal properties governing melting and degradation, so-called the “energy melt ratio (EMR).” The EMR provides a framework for process parameter value selection based solely on melting behavior. However, coalescence, and not merely melting, is the basis for mechanical properties in LPPBF printed parts. The authors present a method for (1) predicting polymer coalescence based on transient temperature profiles resulting from a combination of LPPBF process parameter values and (2) connecting the predicted coalescence response to the observed onset of a plateau in mechanical properties. This work tests the hypothesis that the observed onset of a mechanical property plateau corresponds with a transition in consolidation physics. Complete coalescence must be achieved prior to the onset of physical gelation. For this work, in situ transient temperature profiles were obtained using infrared thermography. Coalescence prediction, via the Upper-convected Maxwell model, and physical gelation prediction, via Lauritzen-Hoffman and Avrami equations, were found to successfully identify LPPBF parameter combinations resulting in parts with density and tensile strength inside the plateau region. The hypothesis that the plateau occurs at the onset of closed pore morphology is supported. Keywords Additive manufacturing; Powder bed fusion; selective laser sintering; polymer coalescence; process parameter prediction; physical gelation List of Abbreviations a Particle size a0 original particle size AM Additive manufacturing CCR Critical Coalescence Ratio De Deborah number DSC Differential scanning calorimetry ED Energy density EMR Energy melt ratio h Hatch spacing IR infrared l layer height P laser power PBF Powder bed fusion LPPBF Laser polymer powder bed fusion rchamber Dimensionless neck radius after isothermal time as a supercooled polymer melt rcritical Dimensionless neck radius at 0.94 relative density rlaser Dimensionless neck radius after laser scanning SC Scan count tAF, 1 Time available for fusion while the laser is scanning tAF, 2 Time available for fusion after the laser has finished scanning until a new layer begins tAF Time available for fusion Tb, inf Temperature of the powder bed bulk tCF Time for critical fusion (i.e., 0.835 dimensionless neck radius) Tfeed Temperature of the feed powder tX10 Time to 10% crystallinity Tm0 Equilibrium melting temperature Tb Surface temperature of the powder bed Tmax maximum temperature measured when laser scanning UCM Upper-convected Maxwell Vb Beam speed x neck radius η Viscosity (unspecified) η0 Zero-shear viscosity ηext Extentional viscosity ηss Steady shear viscosity Γ Surface energy λ Relaxation time Θ Angle between coalescing particles","PeriodicalId":325178,"journal":{"name":"EngRN: Production Engineering (Topic)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Production Engineering (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3805240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract The state of the art in property-process relationships in the laser polymer powder bed fusion (LPPBF) subcategory of powder bed fusion (PBF) has derived relationships between the energy supplied and polymer thermal properties governing melting and degradation, so-called the “energy melt ratio (EMR).” The EMR provides a framework for process parameter value selection based solely on melting behavior. However, coalescence, and not merely melting, is the basis for mechanical properties in LPPBF printed parts. The authors present a method for (1) predicting polymer coalescence based on transient temperature profiles resulting from a combination of LPPBF process parameter values and (2) connecting the predicted coalescence response to the observed onset of a plateau in mechanical properties. This work tests the hypothesis that the observed onset of a mechanical property plateau corresponds with a transition in consolidation physics. Complete coalescence must be achieved prior to the onset of physical gelation. For this work, in situ transient temperature profiles were obtained using infrared thermography. Coalescence prediction, via the Upper-convected Maxwell model, and physical gelation prediction, via Lauritzen-Hoffman and Avrami equations, were found to successfully identify LPPBF parameter combinations resulting in parts with density and tensile strength inside the plateau region. The hypothesis that the plateau occurs at the onset of closed pore morphology is supported. Keywords Additive manufacturing; Powder bed fusion; selective laser sintering; polymer coalescence; process parameter prediction; physical gelation List of Abbreviations a Particle size a0 original particle size AM Additive manufacturing CCR Critical Coalescence Ratio De Deborah number DSC Differential scanning calorimetry ED Energy density EMR Energy melt ratio h Hatch spacing IR infrared l layer height P laser power PBF Powder bed fusion LPPBF Laser polymer powder bed fusion rchamber Dimensionless neck radius after isothermal time as a supercooled polymer melt rcritical Dimensionless neck radius at 0.94 relative density rlaser Dimensionless neck radius after laser scanning SC Scan count tAF, 1 Time available for fusion while the laser is scanning tAF, 2 Time available for fusion after the laser has finished scanning until a new layer begins tAF Time available for fusion Tb, inf Temperature of the powder bed bulk tCF Time for critical fusion (i.e., 0.835 dimensionless neck radius) Tfeed Temperature of the feed powder tX10 Time to 10% crystallinity Tm0 Equilibrium melting temperature Tb Surface temperature of the powder bed Tmax maximum temperature measured when laser scanning UCM Upper-convected Maxwell Vb Beam speed x neck radius η Viscosity (unspecified) η0 Zero-shear viscosity ηext Extentional viscosity ηss Steady shear viscosity Γ Surface energy λ Relaxation time Θ Angle between coalescing particles
用临界聚结比预测激光聚合物粉末床熔融增材制造的力学性能平台
激光聚合物粉末床熔合(LPPBF)粉末床熔合(PBF)的子类别中性能-过程关系的最新进展已经导出了供能与控制熔化和降解的聚合物热性能之间的关系,即所谓的“能量熔化比(EMR)”。EMR为仅根据熔化行为选择工艺参数提供了一个框架。然而,聚结,而不仅仅是熔化,是LPPBF打印部件机械性能的基础。作者提出了一种方法:(1)基于LPPBF工艺参数值组合产生的瞬态温度曲线预测聚合物聚结;(2)将预测的聚结响应与观察到的机械性能平台的开始联系起来。这项工作验证了一个假设,即观察到的力学性能平台的开始与固结物理的转变相对应。完全的聚结必须在物理凝胶化开始之前实现。在这项工作中,利用红外热像仪获得了现场瞬态温度分布。通过Upper-convected Maxwell模型进行聚结预测,通过Lauritzen-Hoffman和Avrami方程进行物理凝胶化预测,可以成功识别高原区域内LPPBF参数组合,从而产生具有密度和抗拉强度的部件。平台发生在闭孔形态开始的假设得到了支持。关键词增材制造;粉末床熔融;选择性激光烧结;聚合物聚结;工艺参数预测;物理胶凝粒径a0原始粒径AM增材制造临界聚结比De Deborah数DSC差示扫描量热法ED能量密度EMR能量熔体比h Hatch间距IR红外层高P激光功率PBF粉末床熔合激光聚合物粉末床熔合室作为过冷聚合物熔体等温时间后的无量纲颈半径相对密度为0.94时的临界无量纲颈半径rlaser激光扫描后无量纲颈部半径SC扫描计数tAF, 1激光扫描tAF时可用于聚变的时间,2激光完成扫描后直到新层开始的可用于聚变的时间tAF可用于聚变的时间Tb, inf粉末床温度体tCF临界聚变的时间(即:进料温度tX10至结晶度10%的时间Tm0平衡熔化温度Tb粉末床表面温度Tmax激光扫描时测得的最高温度UCM上共轭麦克斯韦Vb束流速度x颈半径η粘度(未指定)η0零剪切粘度ηext扩展粘度ηss稳定剪切粘度Γ表面能λ弛豫时间Θ聚结颗粒之间的角度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信