The Cramer-Rao estimation error lower bound computation for deterministic nonlinear systems

James H. Taylor
{"title":"The Cramer-Rao estimation error lower bound computation for deterministic nonlinear systems","authors":"James H. Taylor","doi":"10.1109/CDC.1978.268121","DOIUrl":null,"url":null,"abstract":"For continuous-time nonlinear deterministic system models with discrete nonlinear measurements in additive gaussian white noise, the extended Kalman filter (EKF) covariance propagation equations linearized about the true unknown trajectory provide the Cramér-Rao lower bound to the estimation error covariance matrix. A useful application is establishing the optimum filter performance for a given nonlinear estimation problem by developing a simulation of the nonlinear system and an EKF linearized about the true trajectory.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"184","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.268121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 184

Abstract

For continuous-time nonlinear deterministic system models with discrete nonlinear measurements in additive gaussian white noise, the extended Kalman filter (EKF) covariance propagation equations linearized about the true unknown trajectory provide the Cramér-Rao lower bound to the estimation error covariance matrix. A useful application is establishing the optimum filter performance for a given nonlinear estimation problem by developing a simulation of the nonlinear system and an EKF linearized about the true trajectory.
确定性非线性系统的Cramer-Rao估计误差下界计算
对于加性高斯白噪声下具有离散非线性测量的连续非线性确定性系统模型,将真未知轨迹线性化的扩展卡尔曼滤波(EKF)协方差传播方程提供了估计误差协方差矩阵的cram - rao下界。一个有用的应用是通过建立非线性系统的模拟和关于真实轨迹的线性化EKF来建立给定非线性估计问题的最佳滤波性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信