Interdependent multiobjective control using Biased Neural Network (Biased NN)

Hwan-Chun Myung, Z. Bien
{"title":"Interdependent multiobjective control using Biased Neural Network (Biased NN)","authors":"Hwan-Chun Myung, Z. Bien","doi":"10.1109/NAFIPS.2001.943750","DOIUrl":null,"url":null,"abstract":"A Biased Neural Network (Biased-NN) is proposed to solve an interdependent multiobjective control problem. The main idea of the Biased-NN stems from a decoupled fuzzy sliding mode control scheme that provides a simple way to achieve asymptotic stability for a class of decoupled systems. Each neuron in the Biased-NN is used to approximate a sign function in order to replace the sliding mode control structure with the Biased-NN. Such a feature is useful for handling the interdependent multiobjective control problem based upon the proposed supporting strategy. While previous works require a priori knowledge for all the objectives, the proposed method uses only expert knowledge of the objective that is considered the main concern. Simulations are conducted to show the effectiveness of the Biased-NN.","PeriodicalId":227374,"journal":{"name":"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2001.943750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Biased Neural Network (Biased-NN) is proposed to solve an interdependent multiobjective control problem. The main idea of the Biased-NN stems from a decoupled fuzzy sliding mode control scheme that provides a simple way to achieve asymptotic stability for a class of decoupled systems. Each neuron in the Biased-NN is used to approximate a sign function in order to replace the sliding mode control structure with the Biased-NN. Such a feature is useful for handling the interdependent multiobjective control problem based upon the proposed supporting strategy. While previous works require a priori knowledge for all the objectives, the proposed method uses only expert knowledge of the objective that is considered the main concern. Simulations are conducted to show the effectiveness of the Biased-NN.
基于有偏神经网络(Biased NN)的相互依赖多目标控制
针对相互依赖的多目标控制问题,提出了一种有偏神经网络(bias - nn)。偏置神经网络的主要思想源于一种解耦模糊滑模控制方案,该方案提供了一种简单的方法来实现一类解耦系统的渐近稳定性。利用偏置神经网络中的每个神经元来近似一个符号函数,从而用偏置神经网络代替滑模控制结构。这一特征有助于处理基于所提支持策略的相互依赖多目标控制问题。虽然以前的工作需要对所有目标的先验知识,但该方法只使用被认为是主要关注的目标的专家知识。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信