Face recognition using Euler Principal Component Analysis

Yinn Xi Boon, S. I. Ch'ng
{"title":"Face recognition using Euler Principal Component Analysis","authors":"Yinn Xi Boon, S. I. Ch'ng","doi":"10.1109/ICIEV.2015.7333975","DOIUrl":null,"url":null,"abstract":"Face images with visual variations can significantly influence the performance of a face recognition system. Euler Principal Component Analysis (e-PCA) uses a dissimilarity measure to increase the differences between subjects even though the face images are under the influence of visual variation. Previous experiments show that e-PCA is particularly effective in reconstructing occluded face images. Thus, in this paper, we investigate if e-PCA can be used to solve the problem of visual variation in face recognition by using the reconstructed face images for the classification process. Different classifiers are also used in our investigation to examine the effect of the reconstructed face image data on the process. Experiments are done on ORL, AR and Yale face databases and it shows that there are improvements in the recognition rate using e-PCA under certain circumstances.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7333975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Face images with visual variations can significantly influence the performance of a face recognition system. Euler Principal Component Analysis (e-PCA) uses a dissimilarity measure to increase the differences between subjects even though the face images are under the influence of visual variation. Previous experiments show that e-PCA is particularly effective in reconstructing occluded face images. Thus, in this paper, we investigate if e-PCA can be used to solve the problem of visual variation in face recognition by using the reconstructed face images for the classification process. Different classifiers are also used in our investigation to examine the effect of the reconstructed face image data on the process. Experiments are done on ORL, AR and Yale face databases and it shows that there are improvements in the recognition rate using e-PCA under certain circumstances.
基于欧拉主成分分析的人脸识别
具有视觉变化的人脸图像会显著影响人脸识别系统的性能。欧拉主成分分析(e-PCA)使用不相似度度量来增加受试者之间的差异,即使人脸图像受到视觉变化的影响。先前的实验表明,e-PCA在重建被遮挡的人脸图像方面特别有效。因此,在本文中,我们研究了e-PCA是否可以通过使用重建的人脸图像进行分类过程来解决人脸识别中的视觉变化问题。在我们的研究中还使用了不同的分类器来检验重建的人脸图像数据对过程的影响。在ORL、AR和Yale人脸数据库上进行了实验,结果表明,在一定的情况下,e-PCA的识别率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信