{"title":"A Study of the Eigenvalues of the Matrix Of Distance Reciprocals in K[r, n-r] And The Cycle C_n","authors":"Lee Xu","doi":"10.54216/gjmsa.060201","DOIUrl":null,"url":null,"abstract":"This paper Deals with the complete bipartite graph K(r, n-r) and the cycle . The matrix of concern is the matrix B which is the (n, n) matrix and whose non zero entries are the reciprocals of the non zero entries of the distance matrix D. A complete characterization of the spectrum of B and a set of n independent eigenvectors of B will be presented. Two special cases will be mentioned, namely the star K(1, n-1) and the graph K(2, n-2). We will also look at the case of infinite graph, i. e if the size n grows big while r stays finite. Finally, some numerical data will be presented. As for the cycle, we present the complete set of eigenvalues of the matrix B.","PeriodicalId":299243,"journal":{"name":"Galoitica: Journal of Mathematical Structures and Applications","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galoitica: Journal of Mathematical Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/gjmsa.060201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper Deals with the complete bipartite graph K(r, n-r) and the cycle . The matrix of concern is the matrix B which is the (n, n) matrix and whose non zero entries are the reciprocals of the non zero entries of the distance matrix D. A complete characterization of the spectrum of B and a set of n independent eigenvectors of B will be presented. Two special cases will be mentioned, namely the star K(1, n-1) and the graph K(2, n-2). We will also look at the case of infinite graph, i. e if the size n grows big while r stays finite. Finally, some numerical data will be presented. As for the cycle, we present the complete set of eigenvalues of the matrix B.