{"title":"Multivariate Hidden Markov Models for Personal Smartphone Sensor Data: Time Series Analysis","authors":"William van der Kamp, N. Osgood","doi":"10.1109/ICHI.2017.84","DOIUrl":null,"url":null,"abstract":"Smartphone-based human activity recognition (HAR) offers growing value for health research. We applied offline Hidden Markov Models (HMMs) to multivariate smartphone sensor data, classifying individual behaviour into a time series of states. We used supervised HMMs, validated using ground-truth data from a small self-report study. The HMMs achieved reasonable accuracy in classifying phone off-person vs. phone on-person, off-vehicle vs. on-vehicle, and phone off-person vs. sitting vs. standing vs. walking, for some participants. Strong evidence suggests that poor accuracy in other cases was caused by participant mislabeling, though HMM shortcomings contributed.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Smartphone-based human activity recognition (HAR) offers growing value for health research. We applied offline Hidden Markov Models (HMMs) to multivariate smartphone sensor data, classifying individual behaviour into a time series of states. We used supervised HMMs, validated using ground-truth data from a small self-report study. The HMMs achieved reasonable accuracy in classifying phone off-person vs. phone on-person, off-vehicle vs. on-vehicle, and phone off-person vs. sitting vs. standing vs. walking, for some participants. Strong evidence suggests that poor accuracy in other cases was caused by participant mislabeling, though HMM shortcomings contributed.