Multivariate Hidden Markov Models for Personal Smartphone Sensor Data: Time Series Analysis

William van der Kamp, N. Osgood
{"title":"Multivariate Hidden Markov Models for Personal Smartphone Sensor Data: Time Series Analysis","authors":"William van der Kamp, N. Osgood","doi":"10.1109/ICHI.2017.84","DOIUrl":null,"url":null,"abstract":"Smartphone-based human activity recognition (HAR) offers growing value for health research. We applied offline Hidden Markov Models (HMMs) to multivariate smartphone sensor data, classifying individual behaviour into a time series of states. We used supervised HMMs, validated using ground-truth data from a small self-report study. The HMMs achieved reasonable accuracy in classifying phone off-person vs. phone on-person, off-vehicle vs. on-vehicle, and phone off-person vs. sitting vs. standing vs. walking, for some participants. Strong evidence suggests that poor accuracy in other cases was caused by participant mislabeling, though HMM shortcomings contributed.","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Smartphone-based human activity recognition (HAR) offers growing value for health research. We applied offline Hidden Markov Models (HMMs) to multivariate smartphone sensor data, classifying individual behaviour into a time series of states. We used supervised HMMs, validated using ground-truth data from a small self-report study. The HMMs achieved reasonable accuracy in classifying phone off-person vs. phone on-person, off-vehicle vs. on-vehicle, and phone off-person vs. sitting vs. standing vs. walking, for some participants. Strong evidence suggests that poor accuracy in other cases was caused by participant mislabeling, though HMM shortcomings contributed.
个人智能手机传感器数据的多元隐马尔可夫模型:时间序列分析
基于智能手机的人类活动识别(HAR)为健康研究提供了越来越大的价值。我们将离线隐马尔可夫模型(hmm)应用于多元智能手机传感器数据,将个体行为分类为状态的时间序列。我们使用有监督的hmm,并使用小型自我报告研究的基本事实数据进行验证。对于一些参与者来说,hmm在分类电话离人、离车、离车、离人、坐着、站着、走着方面达到了合理的准确性。强有力的证据表明,在其他情况下,准确性差是由参与者错误标记引起的,尽管HMM的缺点也有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信