Global Identification of Tracklets in Video Using Long Range Identity Sensors

Xunyi Yu, A. Ganz
{"title":"Global Identification of Tracklets in Video Using Long Range Identity Sensors","authors":"Xunyi Yu, A. Ganz","doi":"10.1109/AVSS.2010.46","DOIUrl":null,"url":null,"abstract":"Reliable tracking of people in video and recovering theiridentities are of great importance to video analytics applications.For outdoor applications, long range identity sensorssuch as active RFID can provide good coverage in alarge open space, though they only provide coarse locationinformation. We propose a probabilistic approach usingnoisy inputs from multiple long range identity sensorsto globally associate and identify fragmented tracklets generatedby video tracking algorithms. We extend a networkflow based data association model to recover tracklet identityefficiently. Our approach is evaluated using five minutesof video and active RFID measurements capturing four peoplewearing RFID tags and a couple of passersby. Simulationis then used to evaluate performance for larger numberof targets under different scenarios.identities are of great importance to video analytics applications.For outdoor applications, long range identity sensorssuch as active RFID can provide good coverage in alarge open space, though they only provide coarse locationinformation. We propose a probabilistic approach usingnoisy inputs from multiple long range identity sensorsto globally associate and identify fragmented tracklets generatedby video tracking algorithms. We extend a networkflow based data association model to recover tracklet identityefficiently. Our approach is evaluated using five minutesof video and active RFID measurements capturing four peoplewearing RFID tags and a couple of passersby. Simulationis then used to evaluate performance for larger numberof targets under different scenarios.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Reliable tracking of people in video and recovering theiridentities are of great importance to video analytics applications.For outdoor applications, long range identity sensorssuch as active RFID can provide good coverage in alarge open space, though they only provide coarse locationinformation. We propose a probabilistic approach usingnoisy inputs from multiple long range identity sensorsto globally associate and identify fragmented tracklets generatedby video tracking algorithms. We extend a networkflow based data association model to recover tracklet identityefficiently. Our approach is evaluated using five minutesof video and active RFID measurements capturing four peoplewearing RFID tags and a couple of passersby. Simulationis then used to evaluate performance for larger numberof targets under different scenarios.identities are of great importance to video analytics applications.For outdoor applications, long range identity sensorssuch as active RFID can provide good coverage in alarge open space, though they only provide coarse locationinformation. We propose a probabilistic approach usingnoisy inputs from multiple long range identity sensorsto globally associate and identify fragmented tracklets generatedby video tracking algorithms. We extend a networkflow based data association model to recover tracklet identityefficiently. Our approach is evaluated using five minutesof video and active RFID measurements capturing four peoplewearing RFID tags and a couple of passersby. Simulationis then used to evaluate performance for larger numberof targets under different scenarios.
基于远程身份传感器的视频轨迹全局识别
视频中人物的可靠跟踪和身份恢复对视频分析应用具有重要意义。对于户外应用,远距离身份传感器(如有源RFID)可以在大的开放空间提供良好的覆盖,尽管它们只提供粗略的位置信息。我们提出了一种概率方法,使用来自多个远程身份传感器的噪声输入来全局关联和识别由视频跟踪算法生成的碎片轨迹。我们扩展了一种基于网络工作流的数据关联模型来有效地恢复轨迹识别。我们的方法是通过五分钟的视频和主动射频识别测量来评估的,这些测量捕获了四个佩戴射频识别标签的人和几个路人。然后使用模拟来评估不同场景下大量目标的性能。身份对视频分析应用非常重要。对于户外应用,远距离身份传感器(如有源RFID)可以在大的开放空间提供良好的覆盖,尽管它们只提供粗略的位置信息。我们提出了一种概率方法,使用来自多个远程身份传感器的噪声输入来全局关联和识别由视频跟踪算法生成的碎片轨迹。我们扩展了一种基于网络工作流的数据关联模型来有效地恢复轨迹识别。我们的方法是通过五分钟的视频和主动射频识别测量来评估的,这些测量捕获了四个佩戴射频识别标签的人和几个路人。然后使用模拟来评估不同场景下大量目标的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信