Sentio

Salma Elmalaki, H. Tsai, M. Srivastava
{"title":"Sentio","authors":"Salma Elmalaki, H. Tsai, M. Srivastava","doi":"10.1145/3274783.3274843","DOIUrl":null,"url":null,"abstract":"Thanks to the adoption of more sensors in the automotive industry, context-aware Advanced Driver Assistance Systems (ADAS) become possible. On one side, a common thread in ADAS applications is to focus entirely on the context of the vehicle and its surrounding vehicles leaving the human (driver) context out of consideration. On the other side, and due to the increasing sensing capabilities in mobile phones and wearable technologies, monitoring complex human context becomes feasible which paves the way to develop driver-in-the-loop context-aware ADAS that provide personalized driving experience. In this paper, we propose Sentio1; a Reinforcement Learning based algorithm to enhance the Forward Collision Warning (FCW) system leading to Driver-in-the-Loop FCW system. Since the human driving preference is unknown a priori, varies between different drivers, and moreover, varies across time for the same driver, the proposed Sentio algorithm needs to take into account all these variabilities which are not handled by the standard reinforcement learning algorithms. We verified the proposed algorithm against several human drivers. Our evaluation, across distracted human drivers, shows a significant enhancement in driver experience---compared to standard FCW systems---reflected by an increase in the driver safety by 94.28%, an improvement in the driving experience by 20.97%, a decrease in the false negatives from 55.90% down to 3.26%, while adding less than 130 ms runtime execution overhead.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3274843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Thanks to the adoption of more sensors in the automotive industry, context-aware Advanced Driver Assistance Systems (ADAS) become possible. On one side, a common thread in ADAS applications is to focus entirely on the context of the vehicle and its surrounding vehicles leaving the human (driver) context out of consideration. On the other side, and due to the increasing sensing capabilities in mobile phones and wearable technologies, monitoring complex human context becomes feasible which paves the way to develop driver-in-the-loop context-aware ADAS that provide personalized driving experience. In this paper, we propose Sentio1; a Reinforcement Learning based algorithm to enhance the Forward Collision Warning (FCW) system leading to Driver-in-the-Loop FCW system. Since the human driving preference is unknown a priori, varies between different drivers, and moreover, varies across time for the same driver, the proposed Sentio algorithm needs to take into account all these variabilities which are not handled by the standard reinforcement learning algorithms. We verified the proposed algorithm against several human drivers. Our evaluation, across distracted human drivers, shows a significant enhancement in driver experience---compared to standard FCW systems---reflected by an increase in the driver safety by 94.28%, an improvement in the driving experience by 20.97%, a decrease in the false negatives from 55.90% down to 3.26%, while adding less than 130 ms runtime execution overhead.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信