On Several Verifiable Random Functions and the q-decisional Bilinear Diffie-Hellman Inversion Assumption

S. Lauer
{"title":"On Several Verifiable Random Functions and the q-decisional Bilinear Diffie-Hellman Inversion Assumption","authors":"S. Lauer","doi":"10.1145/3197507.3197515","DOIUrl":null,"url":null,"abstract":"In 1999, Micali, Rabin and Vadhan introduced the notion of Verifiable Random Functions (VRF)\\citeFOCS:MicRabVad99. VRFs compute for a given input x and a secret key $sk$ a unique function value $y=V_sk (x)$, and additionally a publicly verifiable proof π. Each owner of the corresponding public key $pk$ can use the proof to non-interactivly verify that the function value was computed correctly. Furthermore, the function value provides the property of pseudorandomness. Most constructions in the past are based on q-type assumptions. Since these assumptions get stronger for a larger factor q, it is desirable to show the existence of VRFs under static or general assumptions. In this work we will show for the constructions presented in \\citePKC:DodYam05 \\citeCCS:BonMonRag10 the equivalence of breaking the VRF and solving the underlying q-type assumption.","PeriodicalId":170582,"journal":{"name":"Proceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3197507.3197515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In 1999, Micali, Rabin and Vadhan introduced the notion of Verifiable Random Functions (VRF)\citeFOCS:MicRabVad99. VRFs compute for a given input x and a secret key $sk$ a unique function value $y=V_sk (x)$, and additionally a publicly verifiable proof π. Each owner of the corresponding public key $pk$ can use the proof to non-interactivly verify that the function value was computed correctly. Furthermore, the function value provides the property of pseudorandomness. Most constructions in the past are based on q-type assumptions. Since these assumptions get stronger for a larger factor q, it is desirable to show the existence of VRFs under static or general assumptions. In this work we will show for the constructions presented in \citePKC:DodYam05 \citeCCS:BonMonRag10 the equivalence of breaking the VRF and solving the underlying q-type assumption.
若干可验证随机函数及q-decision双线性Diffie-Hellman反演假设
1999年,Micali, Rabin和Vadhan提出了可验证随机函数(VRF)\citeFOCS:MicRabVad99的概念。vrf为给定的输入x和密钥$sk$计算一个唯一的函数值$y=V_sk (x)$,另外还计算一个可公开验证的证明π。对应公钥$pk$的每个所有者都可以使用该证明非交互式地验证函数值是否计算正确。此外,该函数值还具有伪随机性。过去的大多数构造都是基于q型假设。由于因子q越大,这些假设就越强,因此需要在静态或一般假设下证明vrf的存在性。在这项工作中,我们将为\citePKC:DodYam05 \citeCCS:BonMonRag10中提出的结构展示打破VRF和解决底层q型假设的等效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信