Sato-Tate distributions

Andrew V. Sutherland
{"title":"Sato-Tate distributions","authors":"Andrew V. Sutherland","doi":"10.1090/conm/740/14904","DOIUrl":null,"url":null,"abstract":"In this expository article we explore the relationship between Galois representations, motivic L-functions, Mumford-Tate groups, and Sato-Tate groups, and we give an explicit formulation of the Sato-Tate conjecture for abelian varieties as an equidistribution statement relative to the Sato-Tate group. We then discuss the classification of Sato-Tate groups of abelian varieties of dimension g <= 3 and compute some of the corresponding trace distributions. This article is based on a series of lectures presented at the 2016 Arizona Winter School held at the Southwest Center for Arithmetic Geometry.","PeriodicalId":344558,"journal":{"name":"Analytic Methods in Arithmetic\n Geometry","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Arithmetic\n Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/740/14904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this expository article we explore the relationship between Galois representations, motivic L-functions, Mumford-Tate groups, and Sato-Tate groups, and we give an explicit formulation of the Sato-Tate conjecture for abelian varieties as an equidistribution statement relative to the Sato-Tate group. We then discuss the classification of Sato-Tate groups of abelian varieties of dimension g <= 3 and compute some of the corresponding trace distributions. This article is based on a series of lectures presented at the 2016 Arizona Winter School held at the Southwest Center for Arithmetic Geometry.
Sato-Tate分布
在这篇说明性的文章中,我们探讨了伽罗瓦表示、动机l函数、Mumford-Tate群和Sato-Tate群之间的关系,并给出了一个关于阿贝尔变的Sato-Tate猜想的显式表述,作为相对于Sato-Tate群的一个等分布陈述。然后讨论了维数g <= 3的阿贝尔变的Sato-Tate群的分类,并计算了相应的迹分布。本文基于在西南几何中心举办的2016年亚利桑那州冬季学校的一系列讲座。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信