Jiawen Liu, Jie Ren, R. Gioiosa, Dong Li, Jiajia Li
{"title":"Sparta: high-performance, element-wise sparse tensor contraction on heterogeneous memory","authors":"Jiawen Liu, Jie Ren, R. Gioiosa, Dong Li, Jiajia Li","doi":"10.1145/3437801.3441581","DOIUrl":null,"url":null,"abstract":"Sparse tensor contractions appear commonly in many applications. Efficiently computing a two sparse tensor product is challenging: It not only inherits the challenges from common sparse matrix-matrix multiplication (SpGEMM), i.e., indirect memory access and unknown output size before computation, but also raises new challenges because of high dimensionality of tensors, expensive multi-dimensional index search, and massive intermediate and output data. To address the above challenges, we introduce three optimization techniques by using multi-dimensional, efficient hashtable representation for the accumulator and larger input tensor, and all-stage parallelization. Evaluating with 15 datasets, we show that Sparta brings 28 -- 576× speedup over the traditional sparse tensor contraction with sparse accumulator. With our proposed algorithm- and memory heterogeneity-aware data management, Sparta brings extra performance improvement on the heterogeneous memory with DRAM and Intel Optane DC Persistent Memory Module (PMM) over a state-of-the-art software-based data management solution, a hardware-based data management solution, and PMM-only by 30.7% (up to 98.5%), 10.7% (up to 28.3%) and 17% (up to 65.1%) respectively.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Sparse tensor contractions appear commonly in many applications. Efficiently computing a two sparse tensor product is challenging: It not only inherits the challenges from common sparse matrix-matrix multiplication (SpGEMM), i.e., indirect memory access and unknown output size before computation, but also raises new challenges because of high dimensionality of tensors, expensive multi-dimensional index search, and massive intermediate and output data. To address the above challenges, we introduce three optimization techniques by using multi-dimensional, efficient hashtable representation for the accumulator and larger input tensor, and all-stage parallelization. Evaluating with 15 datasets, we show that Sparta brings 28 -- 576× speedup over the traditional sparse tensor contraction with sparse accumulator. With our proposed algorithm- and memory heterogeneity-aware data management, Sparta brings extra performance improvement on the heterogeneous memory with DRAM and Intel Optane DC Persistent Memory Module (PMM) over a state-of-the-art software-based data management solution, a hardware-based data management solution, and PMM-only by 30.7% (up to 98.5%), 10.7% (up to 28.3%) and 17% (up to 65.1%) respectively.