Sparta: high-performance, element-wise sparse tensor contraction on heterogeneous memory

Jiawen Liu, Jie Ren, R. Gioiosa, Dong Li, Jiajia Li
{"title":"Sparta: high-performance, element-wise sparse tensor contraction on heterogeneous memory","authors":"Jiawen Liu, Jie Ren, R. Gioiosa, Dong Li, Jiajia Li","doi":"10.1145/3437801.3441581","DOIUrl":null,"url":null,"abstract":"Sparse tensor contractions appear commonly in many applications. Efficiently computing a two sparse tensor product is challenging: It not only inherits the challenges from common sparse matrix-matrix multiplication (SpGEMM), i.e., indirect memory access and unknown output size before computation, but also raises new challenges because of high dimensionality of tensors, expensive multi-dimensional index search, and massive intermediate and output data. To address the above challenges, we introduce three optimization techniques by using multi-dimensional, efficient hashtable representation for the accumulator and larger input tensor, and all-stage parallelization. Evaluating with 15 datasets, we show that Sparta brings 28 -- 576× speedup over the traditional sparse tensor contraction with sparse accumulator. With our proposed algorithm- and memory heterogeneity-aware data management, Sparta brings extra performance improvement on the heterogeneous memory with DRAM and Intel Optane DC Persistent Memory Module (PMM) over a state-of-the-art software-based data management solution, a hardware-based data management solution, and PMM-only by 30.7% (up to 98.5%), 10.7% (up to 28.3%) and 17% (up to 65.1%) respectively.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Sparse tensor contractions appear commonly in many applications. Efficiently computing a two sparse tensor product is challenging: It not only inherits the challenges from common sparse matrix-matrix multiplication (SpGEMM), i.e., indirect memory access and unknown output size before computation, but also raises new challenges because of high dimensionality of tensors, expensive multi-dimensional index search, and massive intermediate and output data. To address the above challenges, we introduce three optimization techniques by using multi-dimensional, efficient hashtable representation for the accumulator and larger input tensor, and all-stage parallelization. Evaluating with 15 datasets, we show that Sparta brings 28 -- 576× speedup over the traditional sparse tensor contraction with sparse accumulator. With our proposed algorithm- and memory heterogeneity-aware data management, Sparta brings extra performance improvement on the heterogeneous memory with DRAM and Intel Optane DC Persistent Memory Module (PMM) over a state-of-the-art software-based data management solution, a hardware-based data management solution, and PMM-only by 30.7% (up to 98.5%), 10.7% (up to 28.3%) and 17% (up to 65.1%) respectively.
Sparta:异构内存上的高性能、元素明智的稀疏张量收缩
稀疏张量收缩通常出现在许多应用中。高效地计算两个稀疏张量积是一个挑战:它不仅继承了常见的稀疏矩阵-矩阵乘法(SpGEMM)的挑战,即间接内存访问和计算前未知的输出大小,而且由于张量的高维性、昂贵的多维索引搜索以及大量的中间和输出数据而提出了新的挑战。为了解决上述挑战,我们引入了三种优化技术,即对累加器和更大输入张量使用多维、高效的哈希表表示,以及全阶段并行化。通过对15个数据集的评估,我们发现Sparta比使用稀疏累加器的传统稀疏张量收缩带来了28—576倍的加速。通过我们提出的算法和内存异构感知数据管理,Sparta在基于最先进的基于软件的数据管理解决方案、基于硬件的数据管理解决方案和PMM的异构内存上带来了额外的性能改进——分别提高了30.7%(最高98.5%)、10.7%(最高28.3%)和17%(最高65.1%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信