Searching with Local Information in Complex Networks

Tao Zhang, Bailiang Cheng, Anquan Jie
{"title":"Searching with Local Information in Complex Networks","authors":"Tao Zhang, Bailiang Cheng, Anquan Jie","doi":"10.1109/ETCS.2009.493","DOIUrl":null,"url":null,"abstract":"Searching in complex networks is different from random and regular networks for existing long range connections and hub nodes. So the research on structure and characters of networks will improve the search speed and lower the load of nodes. Though getting the shortest paths is the best choice, in a real network, it is impossible for a node to get global information. For example, there is not a node that has the whole network information in a peer-to-peer network. The shortest paths are available, but the cost, especially in a dynamical network, will be high. The paper first discusses the main characters of complex network and the existing searching strategies with local information, and then defines and analyzes maximum diffuse nodes. After evaluating the stability of maximum diffuse nodes in dynamical network, the paper designs searching strategy based on maximum diffuse principle. To validate the idea, we numerically simulate the most characteristic complex network model of Barabási and Albert (BA model), and analyze the average path, the network average load and every node’s load in different initial parameter values. The result indicates the new algorithm is effective not only in finding average path but also in load balance.","PeriodicalId":422513,"journal":{"name":"2009 First International Workshop on Education Technology and Computer Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First International Workshop on Education Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCS.2009.493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Searching in complex networks is different from random and regular networks for existing long range connections and hub nodes. So the research on structure and characters of networks will improve the search speed and lower the load of nodes. Though getting the shortest paths is the best choice, in a real network, it is impossible for a node to get global information. For example, there is not a node that has the whole network information in a peer-to-peer network. The shortest paths are available, but the cost, especially in a dynamical network, will be high. The paper first discusses the main characters of complex network and the existing searching strategies with local information, and then defines and analyzes maximum diffuse nodes. After evaluating the stability of maximum diffuse nodes in dynamical network, the paper designs searching strategy based on maximum diffuse principle. To validate the idea, we numerically simulate the most characteristic complex network model of Barabási and Albert (BA model), and analyze the average path, the network average load and every node’s load in different initial parameter values. The result indicates the new algorithm is effective not only in finding average path but also in load balance.
复杂网络中的局部信息搜索
复杂网络中的搜索不同于随机和规则网络中存在的远程连接和集线器节点。因此,对网络结构和特性的研究将提高搜索速度,降低节点的负载。虽然获取最短路径是最佳选择,但在实际网络中,节点不可能获得全局信息。例如,在对等网络中,没有一个节点拥有整个网络的信息。最短的路径是可用的,但是代价很高,特别是在动态网络中。本文首先讨论了复杂网络的主要特征和现有的局部信息搜索策略,然后定义和分析了最大扩散节点。在评估了动态网络中最大扩散节点的稳定性后,设计了基于最大扩散原理的搜索策略。为了验证这一思想,我们对最具特征的复杂网络模型Barabási和Albert (BA模型)进行了数值模拟,分析了在不同初始参数值下的平均路径、网络平均负载和每个节点的负载。结果表明,新算法不仅在寻找平均路径方面有较好的效果,而且在负载均衡方面也有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信