A Bayesian Filter to Detect Misbehaving Nodes in MANETs

Youcef Beghriche, V. Toubiana, H. Labiod
{"title":"A Bayesian Filter to Detect Misbehaving Nodes in MANETs","authors":"Youcef Beghriche, V. Toubiana, H. Labiod","doi":"10.1109/NTMS.2008.ECP.7","DOIUrl":null,"url":null,"abstract":"Composed of mobile nodes, MANETs rely on the entire collaboration of nodes to provide routing and forwarding functions. Most MANET security solutions identify and exclude malicious and selfish nodes. These mechanisms rely on local monitoring tools to detect untrustworthy nodes and then spread trust information through recommendations. In this paper we apply a Bayesian model [1] to improve MANET security. We classify nodes behavior relying on a decision based on a probabilistic Bayesian model. The novelty of our approach is that it classifies nodes based on distant observations. We describe statistical parameters like Accuracy, Error and the Total Cost Ratio that are used to evaluate the efficiency of the filter through a set of simulations of an attacked pure ad hoc network.","PeriodicalId":432307,"journal":{"name":"2008 New Technologies, Mobility and Security","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 New Technologies, Mobility and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2008.ECP.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Composed of mobile nodes, MANETs rely on the entire collaboration of nodes to provide routing and forwarding functions. Most MANET security solutions identify and exclude malicious and selfish nodes. These mechanisms rely on local monitoring tools to detect untrustworthy nodes and then spread trust information through recommendations. In this paper we apply a Bayesian model [1] to improve MANET security. We classify nodes behavior relying on a decision based on a probabilistic Bayesian model. The novelty of our approach is that it classifies nodes based on distant observations. We describe statistical parameters like Accuracy, Error and the Total Cost Ratio that are used to evaluate the efficiency of the filter through a set of simulations of an attacked pure ad hoc network.
基于贝叶斯滤波的manet异常节点检测
manet由移动节点组成,依靠节点的整体协作来提供路由和转发功能。大多数MANET安全解决方案识别和排除恶意和自私的节点。这些机制依靠本地监控工具检测不可信节点,然后通过推荐传播信任信息。在本文中,我们应用贝叶斯模型[1]来提高MANET的安全性。我们根据基于概率贝叶斯模型的决策对节点行为进行分类。我们的方法的新颖之处在于它根据远距离观测对节点进行分类。我们描述了统计参数,如准确性,误差和总成本比,用于通过一组受攻击的纯自组织网络的模拟来评估滤波器的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信