An Externally-Constrained Ising Clustering Method for Material Informatics

K. Komatsu, Masahito Kumagai, Ji Qi, Masayuki Sato, Hiroaki Kobayashi
{"title":"An Externally-Constrained Ising Clustering Method for Material Informatics","authors":"K. Komatsu, Masahito Kumagai, Ji Qi, Masayuki Sato, Hiroaki Kobayashi","doi":"10.1109/CANDARW53999.2021.00040","DOIUrl":null,"url":null,"abstract":"Due to the recent advancement of data science, such as machine learning and big-data analysis, the approach using data science techniques has attracted attention even to develop new materials, called material informatics. In material informatics, clustering is one of the essential data processing techniques to understand thermophysical properties. Thus, clustering quality is a high priority to be considered. To improve clustering accuracy, this paper evaluates Ising-based clustering methods using an annealing machine. As an annealing machine minimizes the energy of an Ising model, the Ising-based clustering methods define the clustering as an Ising model to minimize the sum of intra-cluster distances among data. Since the non-Ising-based clustering methods conventionally used in materials informatics perform pseudo-optimization, the Ising-based clustering methods can achieve high clustering accuracy. The experimental results show that the Ising-based clustering method with externally-defined constraint achieves higher clustering accuracy with an affordable execution time than the conventional K-means clustering method.","PeriodicalId":325028,"journal":{"name":"2021 Ninth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Ninth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW53999.2021.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the recent advancement of data science, such as machine learning and big-data analysis, the approach using data science techniques has attracted attention even to develop new materials, called material informatics. In material informatics, clustering is one of the essential data processing techniques to understand thermophysical properties. Thus, clustering quality is a high priority to be considered. To improve clustering accuracy, this paper evaluates Ising-based clustering methods using an annealing machine. As an annealing machine minimizes the energy of an Ising model, the Ising-based clustering methods define the clustering as an Ising model to minimize the sum of intra-cluster distances among data. Since the non-Ising-based clustering methods conventionally used in materials informatics perform pseudo-optimization, the Ising-based clustering methods can achieve high clustering accuracy. The experimental results show that the Ising-based clustering method with externally-defined constraint achieves higher clustering accuracy with an affordable execution time than the conventional K-means clustering method.
一种材料信息学的外部约束Ising聚类方法
由于最近数据科学的进步,如机器学习和大数据分析,使用数据科学技术的方法甚至引起了开发新材料的关注,称为材料信息学。在材料信息学中,聚类是理解材料热物理性质的重要数据处理技术之一。因此,聚类质量是需要优先考虑的问题。为了提高聚类精度,本文利用退火炉对基于ising的聚类方法进行了评价。与退火炉最小化Ising模型的能量一样,基于Ising的聚类方法将聚类定义为最小化数据间簇内距离之和的Ising模型。由于材料信息学中常用的非基于ising的聚类方法会进行伪优化,因此基于ising的聚类方法可以达到较高的聚类精度。实验结果表明,与传统的K-means聚类方法相比,基于ising的具有外部定义约束的聚类方法在可承受的执行时间内获得了更高的聚类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信