Learning to acquire and select useful landmarks for route following

P. Zingaretti, A. Carbonaro
{"title":"Learning to acquire and select useful landmarks for route following","authors":"P. Zingaretti, A. Carbonaro","doi":"10.1109/EURBOT.1999.827636","DOIUrl":null,"url":null,"abstract":"The paper describes a prototypical system for optimal landmark acquisition and selection. Our landmark-learning approach does not require any type of environment model to be supplied to the robot in advance, and represents a step towards robots interacting with real environments. The approach is fitted and tested for the TMGA system (P. Zingaretti et al., 1998), which the authors developed for landmark tracking by adaptive, stereo template matching. Two complementary strategies, properly managed, are followed to construct a suitable subset of landmarks: the selection of the more discriminant landmarks and the selection of the landmarks that are more invariant in a neighbourhood. The robustness of the TMGA system in analysing the discriminant power of each landmark and the analysis of the disparity map and of the spatial activity maps of the stereo images are used for identifying discriminant and invariant landmarks. The experimental results show that the number of matching failures, and consequent landmark changes during the following of a route is comparable with (not much greater than) those obtained using an a-priori subset.","PeriodicalId":364500,"journal":{"name":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1999.827636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper describes a prototypical system for optimal landmark acquisition and selection. Our landmark-learning approach does not require any type of environment model to be supplied to the robot in advance, and represents a step towards robots interacting with real environments. The approach is fitted and tested for the TMGA system (P. Zingaretti et al., 1998), which the authors developed for landmark tracking by adaptive, stereo template matching. Two complementary strategies, properly managed, are followed to construct a suitable subset of landmarks: the selection of the more discriminant landmarks and the selection of the landmarks that are more invariant in a neighbourhood. The robustness of the TMGA system in analysing the discriminant power of each landmark and the analysis of the disparity map and of the spatial activity maps of the stereo images are used for identifying discriminant and invariant landmarks. The experimental results show that the number of matching failures, and consequent landmark changes during the following of a route is comparable with (not much greater than) those obtained using an a-priori subset.
学习获取和选择有用的路标
本文描述了一个用于最优地标获取和选择的原型系统。我们的里程碑式学习方法不需要提前向机器人提供任何类型的环境模型,并且代表了机器人与真实环境交互的一步。该方法适用于TMGA系统(P. Zingaretti等人,1998),该系统是作者通过自适应立体模板匹配开发的地标跟踪。遵循两种互补的策略,适当地管理,以构建一个合适的地标子集:选择更具区别性的地标和选择在社区中更不变的地标。利用TMGA系统在分析每个地标的判别能力以及对立体图像的视差图和空间活动图的分析方面的鲁棒性来识别区分和不变地标。实验结果表明,该方法在路径跟踪过程中的匹配失败次数和相应的地标变化次数与使用先验子集获得的匹配失败次数相当(不大于)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信