{"title":"Collision-free and kinematically feasible path planning along a reference path for autonomous vehicle","authors":"M. Fu, Kai Zhang, Yi Yang, Hao Zhu, Meiling Wang","doi":"10.1109/IVS.2015.7225800","DOIUrl":null,"url":null,"abstract":"For the local path planning problem of autonomous vehicle in a complicated environment, a method combining cubic hermite spline curves with the kinematic model of autonomous vehicle is developed. And a novel algorithm for obstacle avoidance, called navigation circle, is proposed to take the road structure into account, which is a practical method for real-time path planning. In the new method, one of the trajectory generated by cubic hermite spline curves or navigation circle is optimized through the kinematic model of autonomous vehicle to get the kinematically feasible trajectory. The optimization is actually a numerical forward propagation and is easy to implement. The simulation experiment is conducted on the Robot Operating System (ROS) platform, which is based on replaying the data of the real world obtained from sensors or other modules on autonomous vehicle. Satisfactory simulation results verify the validity and the efficiency of the proposed method as well as the planner's capability to navigate in a realistic scenario.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
For the local path planning problem of autonomous vehicle in a complicated environment, a method combining cubic hermite spline curves with the kinematic model of autonomous vehicle is developed. And a novel algorithm for obstacle avoidance, called navigation circle, is proposed to take the road structure into account, which is a practical method for real-time path planning. In the new method, one of the trajectory generated by cubic hermite spline curves or navigation circle is optimized through the kinematic model of autonomous vehicle to get the kinematically feasible trajectory. The optimization is actually a numerical forward propagation and is easy to implement. The simulation experiment is conducted on the Robot Operating System (ROS) platform, which is based on replaying the data of the real world obtained from sensors or other modules on autonomous vehicle. Satisfactory simulation results verify the validity and the efficiency of the proposed method as well as the planner's capability to navigate in a realistic scenario.