{"title":"Additive Manufacturing","authors":"H. Kalita, D. Zindani, Kaushik Kumar","doi":"10.4018/978-1-5225-9167-2.CH003","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) is the most advanced recently trending manufacturing technique that employs 3D printers to create 3D objects by layer upon layer fabrication from the base to the top. The required trajectory of the fabricating tool to create the layer can be well programmed by CAD software available in the market. The 3D CAD model in the computer can be manipulated and customized for different design needs of the product. These manipulations in model and quick fabrication process make the system a flexible and an effective one. This chapter discusses the AM application in educational system by describing the individual AM processes, their limitations, advantages, feasibility in general conditions, and planning for future generations to get accustomed to this technology from the early education in schools to the specialized education in universities. The technology enables students to convert 2D objects into 3D on the CAD software and feel them physically by 3D printing. AM also enables teachers to demonstrate their ideas easily to students.","PeriodicalId":300523,"journal":{"name":"Additive Manufacturing Technologies From an Optimization Perspective","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive Manufacturing Technologies From an Optimization Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-9167-2.CH003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Additive manufacturing (AM) is the most advanced recently trending manufacturing technique that employs 3D printers to create 3D objects by layer upon layer fabrication from the base to the top. The required trajectory of the fabricating tool to create the layer can be well programmed by CAD software available in the market. The 3D CAD model in the computer can be manipulated and customized for different design needs of the product. These manipulations in model and quick fabrication process make the system a flexible and an effective one. This chapter discusses the AM application in educational system by describing the individual AM processes, their limitations, advantages, feasibility in general conditions, and planning for future generations to get accustomed to this technology from the early education in schools to the specialized education in universities. The technology enables students to convert 2D objects into 3D on the CAD software and feel them physically by 3D printing. AM also enables teachers to demonstrate their ideas easily to students.