A lower bound on the expected length of one-to-one codes

N. Alon, A. Orlitsky
{"title":"A lower bound on the expected length of one-to-one codes","authors":"N. Alon, A. Orlitsky","doi":"10.1109/ISIT.1994.394765","DOIUrl":null,"url":null,"abstract":"Shows that the expected length of any one-to-one encoding of a discrete random variable X is at least H(X)-log (H(X)+1)-log e and that this bound is asymptotically achievable.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Shows that the expected length of any one-to-one encoding of a discrete random variable X is at least H(X)-log (H(X)+1)-log e and that this bound is asymptotically achievable.<>
一对一码的期望长度的下界
证明了离散随机变量X的任何一对一编码的期望长度至少为H(X)-log (H(X)+1)-log e,并且该边界是渐近可实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信