Heart atherosclerosis detection using FCM+kMeans Algorithm

V. Elangovan, A. Joe, D. Akila, K. Shankari, G. Suseendran
{"title":"Heart atherosclerosis detection using FCM+kMeans Algorithm","authors":"V. Elangovan, A. Joe, D. Akila, K. Shankari, G. Suseendran","doi":"10.1109/ICCAKM50778.2021.9357719","DOIUrl":null,"url":null,"abstract":"This paper presented the methodology to apply segmentation techniques on human heart atherosclerosis images using a hybrid segmentation methods with FCM+kmeans combined segmentation algorithm. Coronary heart disease (CHD) can be caused by atherosclerosis as one of its primary reason. Cardiovascular diseases are significant causes of mortality in the world. The proposed methodology for atherosclerosis segmentation for medical image performs better with some advantages, like improved sensitivity, specificity and accuracy of segmentation. Thus overall performance metrics of the new combined algorithm.","PeriodicalId":165854,"journal":{"name":"2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAKM50778.2021.9357719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presented the methodology to apply segmentation techniques on human heart atherosclerosis images using a hybrid segmentation methods with FCM+kmeans combined segmentation algorithm. Coronary heart disease (CHD) can be caused by atherosclerosis as one of its primary reason. Cardiovascular diseases are significant causes of mortality in the world. The proposed methodology for atherosclerosis segmentation for medical image performs better with some advantages, like improved sensitivity, specificity and accuracy of segmentation. Thus overall performance metrics of the new combined algorithm.
FCM+kMeans算法检测心脏动脉粥样硬化
本文提出了一种基于FCM+kmeans组合分割算法的混合分割方法,将分割技术应用于人类心脏动脉粥样硬化图像。动脉粥样硬化是引起冠心病的主要原因之一。心血管疾病是世界上造成死亡的重要原因。本文提出的方法对医学图像进行动脉粥样硬化分割,具有提高分割灵敏度、特异性和准确性的优点。从而得到新组合算法的总体性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信