Comparing inertia weights of particle swarm optimization in multimodal functions

Ibrahim Berkan Aydilek, M. A. Nacar, Abdülkadir Gümüşçü, Mehmet Umut Salur
{"title":"Comparing inertia weights of particle swarm optimization in multimodal functions","authors":"Ibrahim Berkan Aydilek, M. A. Nacar, Abdülkadir Gümüşçü, Mehmet Umut Salur","doi":"10.1109/IDAP.2017.8090225","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is a state-of-the-art algorithm in meta-heuristic optimization study area. It is a swarm based algorithm that mimic fish or bird's behaviors in the nature. Success rate of convergence in an optimization algorithm depends on control balancing between exploration and exploitation. Inertia weight coefficient parameter controls convergence rate of PSO algorithm. In this paper, different inertia weight: constant, random, linear decreasing and global-local best methods are used in CEC 2017 multimodal benchmark functions. Multimodal functions have huge numbers of local optima. Seven multimodal functions are used with 10 and 30 variable dimensions. Obtained result and run time statistics are compared and shown in graphs.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Particle swarm optimization (PSO) is a state-of-the-art algorithm in meta-heuristic optimization study area. It is a swarm based algorithm that mimic fish or bird's behaviors in the nature. Success rate of convergence in an optimization algorithm depends on control balancing between exploration and exploitation. Inertia weight coefficient parameter controls convergence rate of PSO algorithm. In this paper, different inertia weight: constant, random, linear decreasing and global-local best methods are used in CEC 2017 multimodal benchmark functions. Multimodal functions have huge numbers of local optima. Seven multimodal functions are used with 10 and 30 variable dimensions. Obtained result and run time statistics are compared and shown in graphs.
多模态函数中粒子群优化的惯性权重比较
粒子群优化算法(PSO)是元启发式优化研究领域的最新算法。它是一种基于群体的算法,模仿自然界中鱼或鸟的行为。优化算法的收敛成功率取决于勘探和开采之间的控制平衡。惯性权系数参数控制粒子群算法的收敛速度。本文在CEC 2017多模基准函数中采用了不同的惯性权重:常数、随机、线性递减和全局局部最优方法。多模态函数具有大量的局部最优。七个多模态函数分别用于10和30个可变维度。将获得的结果与运行时统计数据进行比较,并以图形形式显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信