{"title":"Nonparametric bootstrap tests for independence of generalized errors","authors":"Zaichao Du","doi":"10.1111/ectj.12059","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we develop a general method of testing for independence when unobservable generalized errors are involved. Our method can be applied to testing for serial independence of generalized errors, and testing for independence between the generalized errors and observable covariates. The former can serve as a unified approach to testing the adequacy of time series models, as model adequacy often implies that the generalized errors obtained after a suitable transformation are independent and identically distributed. The latter is a key identification assumption in many nonlinear economic models. Our tests are based on a classical sample dependence measure, the Hoeffding–Blum–Kiefer–Rosenblatt-type empirical process applied to generalized residuals. We establish a uniform expansion of the process, thereby deriving an explicit expression for the parameter estimation effect, which causes our tests not to be nuisance-parameter-free. To circumvent this problem, we propose a multiplier-type bootstrap to approximate the limit distribution. Our bootstrap procedure is computationally very simple as it does not require a re-estimation of the parameters in each bootstrap replication. Simulations and empirical applications to daily exchange rate data highlight the merits of our approach.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"19 1","pages":"55-83"},"PeriodicalIF":2.9000,"publicationDate":"2016-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12059","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12059","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 14
Abstract
In this paper, we develop a general method of testing for independence when unobservable generalized errors are involved. Our method can be applied to testing for serial independence of generalized errors, and testing for independence between the generalized errors and observable covariates. The former can serve as a unified approach to testing the adequacy of time series models, as model adequacy often implies that the generalized errors obtained after a suitable transformation are independent and identically distributed. The latter is a key identification assumption in many nonlinear economic models. Our tests are based on a classical sample dependence measure, the Hoeffding–Blum–Kiefer–Rosenblatt-type empirical process applied to generalized residuals. We establish a uniform expansion of the process, thereby deriving an explicit expression for the parameter estimation effect, which causes our tests not to be nuisance-parameter-free. To circumvent this problem, we propose a multiplier-type bootstrap to approximate the limit distribution. Our bootstrap procedure is computationally very simple as it does not require a re-estimation of the parameters in each bootstrap replication. Simulations and empirical applications to daily exchange rate data highlight the merits of our approach.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.