Revisiting aggregation-based multigrid for edge elements

Artem Napov, R. Perrussel
{"title":"Revisiting aggregation-based multigrid for edge elements","authors":"Artem Napov, R. Perrussel","doi":"10.1553/ETNA_VOL51S118","DOIUrl":null,"url":null,"abstract":"We consider a modification of the Reitzinger-Schoberl algebraic multigrid method for the iterative solution of the curl-curl boundary value problem discretized with edge elements. The Reitzinger-Schoberl method is attractive for its low memory requirements and moderate cost per iteration, but the number of iterations typically tends to increase with the problem size. Here we propose several modifications to the method that aim at curing the size-dependent convergence behavior without significantly affecting the attractive features of the original method. The comparison with an auxiliary space preconditioner, a state-of-the-art solver for the considered problems, further indicates that both methods typically require a comparable amount of work to solve a given discretized problem but that the proposed approach requires less memory.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL51S118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a modification of the Reitzinger-Schoberl algebraic multigrid method for the iterative solution of the curl-curl boundary value problem discretized with edge elements. The Reitzinger-Schoberl method is attractive for its low memory requirements and moderate cost per iteration, but the number of iterations typically tends to increase with the problem size. Here we propose several modifications to the method that aim at curing the size-dependent convergence behavior without significantly affecting the attractive features of the original method. The comparison with an auxiliary space preconditioner, a state-of-the-art solver for the considered problems, further indicates that both methods typically require a comparable amount of work to solve a given discretized problem but that the proposed approach requires less memory.
重访基于聚合的多网格边缘元素
本文考虑了一种改进的Reitzinger-Schoberl代数多重网格法,用于求解带边元离散的旋旋边值问题的迭代解。Reitzinger-Schoberl方法因其低内存需求和每次迭代的中等成本而具有吸引力,但是迭代的次数通常会随着问题规模的增加而增加。在此,我们对该方法进行了一些修改,目的是在不显著影响原方法的吸引力特征的情况下,消除与尺寸相关的收敛行为。与辅助空间预调节器(最先进的问题求解器)的比较进一步表明,这两种方法通常需要相当数量的工作来解决给定的离散问题,但建议的方法需要更少的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信