TGOpt

Yufeng Wang, Charith Mendis
{"title":"TGOpt","authors":"Yufeng Wang, Charith Mendis","doi":"10.1145/3572848.3577490","DOIUrl":null,"url":null,"abstract":"Temporal Graph Neural Networks are gaining popularity in modeling interactions on dynamic graphs. Among them, Temporal Graph Attention Networks (TGAT) have gained adoption in predictive tasks, such as link prediction, in a range of application domains. Most optimizations and frameworks for Graph Neural Networks (GNNs) focus on GNN models that operate on static graphs. While a few of these optimizations exploit redundant computations on static graphs, they are either not applicable to the self-attention mechanism used in TGATs or do not exploit optimization opportunities that are tied to temporal execution behavior. In this paper, we explore redundancy-aware optimization opportunities that specifically arise from computations that involve temporal components in TGAT inference. We observe considerable redundancies in temporal node embedding computations, such as recomputing previously computed neighbor embeddings and time-encoding of repeated time delta values. To exploit these redundancy opportunities, we developed TGOpt which introduces optimization techniques based on deduplication, memoization, and precomputation to accelerate the inference performance of TGAT. Our experimental results show that TGOpt achieves a geomean speedup of 4.9× on CPU and 2.9× on GPU when performing inference on a wide variety of dynamic graphs, with up to 6.3× speedup for the Reddit Posts dataset on CPU.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Temporal Graph Neural Networks are gaining popularity in modeling interactions on dynamic graphs. Among them, Temporal Graph Attention Networks (TGAT) have gained adoption in predictive tasks, such as link prediction, in a range of application domains. Most optimizations and frameworks for Graph Neural Networks (GNNs) focus on GNN models that operate on static graphs. While a few of these optimizations exploit redundant computations on static graphs, they are either not applicable to the self-attention mechanism used in TGATs or do not exploit optimization opportunities that are tied to temporal execution behavior. In this paper, we explore redundancy-aware optimization opportunities that specifically arise from computations that involve temporal components in TGAT inference. We observe considerable redundancies in temporal node embedding computations, such as recomputing previously computed neighbor embeddings and time-encoding of repeated time delta values. To exploit these redundancy opportunities, we developed TGOpt which introduces optimization techniques based on deduplication, memoization, and precomputation to accelerate the inference performance of TGAT. Our experimental results show that TGOpt achieves a geomean speedup of 4.9× on CPU and 2.9× on GPU when performing inference on a wide variety of dynamic graphs, with up to 6.3× speedup for the Reddit Posts dataset on CPU.
TGOpt
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信