Taxonomical hierarchy of canonicalized relations from multiple Knowledge Bases

Akshay Parekh, Ashish Anand, Amit Awekar
{"title":"Taxonomical hierarchy of canonicalized relations from multiple Knowledge Bases","authors":"Akshay Parekh, Ashish Anand, Amit Awekar","doi":"10.1145/3371158.3371186","DOIUrl":null,"url":null,"abstract":"This work addresses two important questions pertinent to Relation Extraction (RE). First, what are all possible relations that could exist between any two given entity types? Second, how do we define an unambiguous taxonomical (is-a) hierarchy among the identified relations? To address the first question, we use three resources Wikipedia Infobox, Wikidata, and DBpedia. This study focuses on relations between person, organization and location entity types. We exploit Wikidata and DBpedia in a data-driven manner, and Wikipedia Infobox templates manually to generate lists of relations. Further, to address the second question, we canonicalize, filter, and combine the identified relations from the three resources to construct a taxonomical hierarchy. This hierarchy contains 623 canonical relations with the highest contribution from Wikipedia Infobox followed by DBpedia and Wikidata. The generated relation list subsumes an average of 85% of relations from RE datasets when entity types are restricted 1.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work addresses two important questions pertinent to Relation Extraction (RE). First, what are all possible relations that could exist between any two given entity types? Second, how do we define an unambiguous taxonomical (is-a) hierarchy among the identified relations? To address the first question, we use three resources Wikipedia Infobox, Wikidata, and DBpedia. This study focuses on relations between person, organization and location entity types. We exploit Wikidata and DBpedia in a data-driven manner, and Wikipedia Infobox templates manually to generate lists of relations. Further, to address the second question, we canonicalize, filter, and combine the identified relations from the three resources to construct a taxonomical hierarchy. This hierarchy contains 623 canonical relations with the highest contribution from Wikipedia Infobox followed by DBpedia and Wikidata. The generated relation list subsumes an average of 85% of relations from RE datasets when entity types are restricted 1.
来自多个知识库的规范化关系的分类层次结构
这项工作解决了与关系提取(RE)相关的两个重要问题。首先,任意两个给定实体类型之间可能存在的所有关系是什么?其次,我们如何在已识别的关系中定义一个明确的分类(is-a)层次?为了解决第一个问题,我们使用了三个资源Wikipedia Infobox、Wikidata和DBpedia。本研究的重点是人、组织和地点实体类型之间的关系。我们以数据驱动的方式利用Wikidata和DBpedia,并手动使用Wikipedia Infobox模板来生成关系列表。此外,为了解决第二个问题,我们对来自三个资源的已识别关系进行规范化、过滤和组合,以构建一个分类层次结构。这个层次结构包含623个规范关系,其中来自Wikipedia Infobox的贡献最大,其次是DBpedia和Wikidata。当实体类型受到限制时,生成的关系列表平均包含来自RE数据集的85%的关系1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信