{"title":"Hybrid warm water cooled supercomputing system","authors":"D. A. Moore, M. Slaby, T. Cader, K. Regimbal","doi":"10.1109/ITHERM.2016.7517604","DOIUrl":null,"url":null,"abstract":"The National Renewable Energy Laboratory (NREL) has implemented a state-of-the-art facility which tightly integrates campus and datacenter thermal management and allows for a chiller-less system with substantially lower capital and operating expenses than a traditional data center. To further lower these expenses, NREL recovers waste heat for use in climate control of offices and laboratories co-located with its data center. The NREL data center houses a liquid cooled High Performance Computing (HPC) system and supporting air cooled computing equipment collectively known as Peregrine. The energy efficiency of NREL's facility is explored using data acquired during facility operation. The facility achieved an average Power Usage Effectiveness (PUE) of 1.05 over the most recent year of operation. During the study, Peregrine had a peak power consumption of approximately 900kW, while the combination of the cooling towers, pumps, and lighting/plug loads consumed an average of 25.3 kW. Since the start of operations, NREL estimates that it saves approximately $200,000 per year through the recovery of datacenter waste heat. The availability of recovered heat allowed NREL to delay startup of the campus heating boiler by approximately one month during the autumn of 2015.","PeriodicalId":426908,"journal":{"name":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2016.7517604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The National Renewable Energy Laboratory (NREL) has implemented a state-of-the-art facility which tightly integrates campus and datacenter thermal management and allows for a chiller-less system with substantially lower capital and operating expenses than a traditional data center. To further lower these expenses, NREL recovers waste heat for use in climate control of offices and laboratories co-located with its data center. The NREL data center houses a liquid cooled High Performance Computing (HPC) system and supporting air cooled computing equipment collectively known as Peregrine. The energy efficiency of NREL's facility is explored using data acquired during facility operation. The facility achieved an average Power Usage Effectiveness (PUE) of 1.05 over the most recent year of operation. During the study, Peregrine had a peak power consumption of approximately 900kW, while the combination of the cooling towers, pumps, and lighting/plug loads consumed an average of 25.3 kW. Since the start of operations, NREL estimates that it saves approximately $200,000 per year through the recovery of datacenter waste heat. The availability of recovered heat allowed NREL to delay startup of the campus heating boiler by approximately one month during the autumn of 2015.