Performance comparison of super-resolution estimation algorithms used in real or complex LFMCW systems

Li Yang, Liang Liwan, Pan Weifeng, Chen Yanqin, Feng Zhenghe
{"title":"Performance comparison of super-resolution estimation algorithms used in real or complex LFMCW systems","authors":"Li Yang, Liang Liwan, Pan Weifeng, Chen Yanqin, Feng Zhenghe","doi":"10.1109/ICMMT.2000.895773","DOIUrl":null,"url":null,"abstract":"In real or complex linear FMCW (LFMCW) radar systems, employing algorithms with super-resolution capability and low SNR threshold can mitigate the system demands for power and bandwidth, and reduce system cost. In this paper, a comparative study among three typical algorithms is carried out on statistical SNR and resolution performance: MUSIC, AR, and neural network. Simulation results show that the neural network algorithm, having higher resolution and lower SNR threshold in both systems, is suitable for LFMCW applications.","PeriodicalId":354225,"journal":{"name":"ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2000.895773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In real or complex linear FMCW (LFMCW) radar systems, employing algorithms with super-resolution capability and low SNR threshold can mitigate the system demands for power and bandwidth, and reduce system cost. In this paper, a comparative study among three typical algorithms is carried out on statistical SNR and resolution performance: MUSIC, AR, and neural network. Simulation results show that the neural network algorithm, having higher resolution and lower SNR threshold in both systems, is suitable for LFMCW applications.
真实和复杂LFMCW系统中超分辨率估计算法的性能比较
在真实或复杂线性FMCW (LFMCW)雷达系统中,采用具有超分辨能力和低信噪比阈值的算法可以减轻系统对功率和带宽的需求,降低系统成本。本文对MUSIC、AR和神经网络三种典型算法在统计信噪比和分辨率性能方面进行了比较研究。仿真结果表明,神经网络算法在两种系统中都具有较高的分辨率和较低的信噪比阈值,适合于LFMCW应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信