{"title":"Elements of Classical Field Theory","authors":"J. Iliopoulos, T. Tomaras","doi":"10.1093/oso/9780192844200.003.0003","DOIUrl":null,"url":null,"abstract":"The purpose of this chapter is to recall the principles of Lagrangian and Hamiltonian classical mechanics. Many results are presented without detailed proofs. We obtain the Euler–Lagrange equations of motion, and show the equivalence with Hamilton’s equations. We derive Noether’s theorem and show the connection between symmetries and conservation laws. These principles are extended to a system with an infinite number of degrees of freedom, i.e. a classical field theory. The invariance under a Lie group of transformations implies the existence of conserved currents. The corresponding charges generate, through the Poisson brackets, the infinitesimal transformations of the fields as well as the Lie algebra of the group.","PeriodicalId":285777,"journal":{"name":"Elementary Particle Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementary Particle Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192844200.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this chapter is to recall the principles of Lagrangian and Hamiltonian classical mechanics. Many results are presented without detailed proofs. We obtain the Euler–Lagrange equations of motion, and show the equivalence with Hamilton’s equations. We derive Noether’s theorem and show the connection between symmetries and conservation laws. These principles are extended to a system with an infinite number of degrees of freedom, i.e. a classical field theory. The invariance under a Lie group of transformations implies the existence of conserved currents. The corresponding charges generate, through the Poisson brackets, the infinitesimal transformations of the fields as well as the Lie algebra of the group.