Part Priority Clustering Algorithm for Large-Scale Data Set

Zhihao Yin, Bencheng Yu, Zhifeng Wang, Wang Ran
{"title":"Part Priority Clustering Algorithm for Large-Scale Data Set","authors":"Zhihao Yin, Bencheng Yu, Zhifeng Wang, Wang Ran","doi":"10.1109/IHMSC.2013.100","DOIUrl":null,"url":null,"abstract":"The essay mainly studies the algorithm for large-scale data sets, namely, part priority algorithms. None of clustering algorithm can be true of all data sets. A kind of algorithm need to be matched with the realistic demand when faced with detailed data. As to part priority clustering algorithm, firstly, delete the data of first category from the data set after finding out the original data set, then repeat this step. The algorithm is put forward Based on efficiency and the simulation results show good results if less requirement for accuracy of data is made. Simulation results elaborated the steps of the algorithm in detail with the results showing the complexity of large-scale data and the feasibility of the algorithm.","PeriodicalId":222375,"journal":{"name":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2013.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The essay mainly studies the algorithm for large-scale data sets, namely, part priority algorithms. None of clustering algorithm can be true of all data sets. A kind of algorithm need to be matched with the realistic demand when faced with detailed data. As to part priority clustering algorithm, firstly, delete the data of first category from the data set after finding out the original data set, then repeat this step. The algorithm is put forward Based on efficiency and the simulation results show good results if less requirement for accuracy of data is made. Simulation results elaborated the steps of the algorithm in detail with the results showing the complexity of large-scale data and the feasibility of the algorithm.
大规模数据集零件优先级聚类算法
本文主要研究大规模数据集的算法,即零件优先级算法。没有一种聚类算法可以适用于所有的数据集。一种算法在面对详实的数据时,需要与现实需求相匹配。对于零件优先级聚类算法,首先在找到原始数据集后,从数据集中删除第一类数据,然后重复该步骤。该算法以效率为基础提出,仿真结果表明,在对数据精度要求较低的情况下,效果良好。仿真结果详细阐述了算法的步骤,结果显示了大规模数据的复杂性和算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信