C. Szydzik, R. Brazilek, F. Akbaridoust, C. D. de Silva, Mitchell J. Moon, I. Marusic, H. Nandurkar, J. Hamilton, A. Mitchell, W. Nesbitt
{"title":"Towards an active micropump-mixer for rapid anti-platelet drug screening in whole blood","authors":"C. Szydzik, R. Brazilek, F. Akbaridoust, C. D. de Silva, Mitchell J. Moon, I. Marusic, H. Nandurkar, J. Hamilton, A. Mitchell, W. Nesbitt","doi":"10.1117/12.2541102","DOIUrl":null,"url":null,"abstract":"This work reports on development and characterization of an on-chip microfluidic handling system for application in preclinical anti-platelet drug screening. A reciprocating elastomeric micropump/mixer design is presented for use with whole human blood, utilizing flexible structural and actuation properties to manage hemodynamics for an on-chip platelet thrombosis assay on fibrillar collagen. The hemocompatibility of the design is assessed across a range of operational configurations, demonstrating equivalent or superior performance to common microcapillary systems at a range of physiologically relevant shear conditions. Surprisingly efficient mixing phenomena are briefly investigated, validated using dyes within the molecular weight range of common antiplatelet therapies. Finally, a proof-of-concept preclinical application is explored, demonstrating that this prototype can act as a real-time assay of anti-platelet drug pharmacokinetics, compared to an equivalent microcapillary system.","PeriodicalId":131350,"journal":{"name":"Micro + Nano Materials, Devices, and Applications","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2541102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work reports on development and characterization of an on-chip microfluidic handling system for application in preclinical anti-platelet drug screening. A reciprocating elastomeric micropump/mixer design is presented for use with whole human blood, utilizing flexible structural and actuation properties to manage hemodynamics for an on-chip platelet thrombosis assay on fibrillar collagen. The hemocompatibility of the design is assessed across a range of operational configurations, demonstrating equivalent or superior performance to common microcapillary systems at a range of physiologically relevant shear conditions. Surprisingly efficient mixing phenomena are briefly investigated, validated using dyes within the molecular weight range of common antiplatelet therapies. Finally, a proof-of-concept preclinical application is explored, demonstrating that this prototype can act as a real-time assay of anti-platelet drug pharmacokinetics, compared to an equivalent microcapillary system.