Blind SIR Estimation by Convolutional Neural Network Using Visualized IQ Constellation

K. Maruta, S. Kojima, C. Ahn, D. Hisano, Yu Nakayama
{"title":"Blind SIR Estimation by Convolutional Neural Network Using Visualized IQ Constellation","authors":"K. Maruta, S. Kojima, C. Ahn, D. Hisano, Yu Nakayama","doi":"10.1109/VTC2020-Spring48590.2020.9128719","DOIUrl":null,"url":null,"abstract":"This paper proposes the blind interference power estimation via deep learning approach exploiting the visualized wireless signal information. Blind adaptive array (BAA) signal processing is the powerful solution to suppress various kinds of interference such as inter-cell interference (ICI) and intersystem interference (ISysI) for which receivers cannot obtain a priori information represented as channel state information (CSI). However, BAAs cannot always suppress interference due to its blind nature. Depending on signal-to-interference power ration (SIR), adequate BAA algorithms should be switched. In order to estimate SIR in a blind manner, we propose to apply a convolutional neural network (CNN) trained by IQ constellation images where contains the desired and interference signals. This paper presents its methodology and fundamental possibility.","PeriodicalId":348099,"journal":{"name":"2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2020-Spring48590.2020.9128719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes the blind interference power estimation via deep learning approach exploiting the visualized wireless signal information. Blind adaptive array (BAA) signal processing is the powerful solution to suppress various kinds of interference such as inter-cell interference (ICI) and intersystem interference (ISysI) for which receivers cannot obtain a priori information represented as channel state information (CSI). However, BAAs cannot always suppress interference due to its blind nature. Depending on signal-to-interference power ration (SIR), adequate BAA algorithms should be switched. In order to estimate SIR in a blind manner, we propose to apply a convolutional neural network (CNN) trained by IQ constellation images where contains the desired and interference signals. This paper presents its methodology and fundamental possibility.
基于可视化IQ星座的卷积神经网络盲SIR估计
利用可视化的无线信号信息,提出了一种基于深度学习的盲干扰功率估计方法。盲自适应阵列(BAA)信号处理是抑制各种干扰的有效解决方案,如细胞间干扰(ICI)和系统间干扰(ISysI),接收器无法获得以信道状态信息(CSI)表示的先验信息。然而,由于BAAs的盲目性,它并不能完全抑制干扰。根据信干扰功率比(SIR)的不同,应切换适当的BAA算法。为了盲估计SIR,我们提出应用IQ星座图像训练的卷积神经网络(CNN),其中包含期望信号和干扰信号。本文介绍了其方法论和基本可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信