V. Khatavkar, Snehal Andhale, Panchshila Pillewar, Utkarsh Alset
{"title":"Relative Study of Intelligent Control Techniques to Maintain Variable Pitch-Angle of the Wind Turbine","authors":"V. Khatavkar, Snehal Andhale, Panchshila Pillewar, Utkarsh Alset","doi":"10.1109/I2CT57861.2023.10126335","DOIUrl":null,"url":null,"abstract":"The wind turbine requires a robust and time-responsive system to control the pitch–angle (Pit–Ang) of the mechanical actuator. If the response of speed is very efficient then, the controller can act according to the prescribed logic and its mechanical mechanism can work faster with its response time. In this paper, real-time Data from IMD (Indian Meteorological Department) is used for the relative study of the model of wind turbine created in MATLAB / Simulink® environment using Fuzzy Logic Toolbox™. The principle of wind turbine used here is to supply a controlled input to the system and after synthesis, these rules in the form of signal are transferred to the plant which has a drive train and pitch actuator. The output responses of the proposed controller are compared amongst proportional– integral–derivative (PID), fuzzy, and adaptive fuzzy–PID Controllers. The simulation results seen between the adaptive fuzzy– based PID controller surpasses the expected results by Tr = 95.454%, Ts = 61.409% and negligible overshoot as compared to open–looped and conventional responsive controller.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The wind turbine requires a robust and time-responsive system to control the pitch–angle (Pit–Ang) of the mechanical actuator. If the response of speed is very efficient then, the controller can act according to the prescribed logic and its mechanical mechanism can work faster with its response time. In this paper, real-time Data from IMD (Indian Meteorological Department) is used for the relative study of the model of wind turbine created in MATLAB / Simulink® environment using Fuzzy Logic Toolbox™. The principle of wind turbine used here is to supply a controlled input to the system and after synthesis, these rules in the form of signal are transferred to the plant which has a drive train and pitch actuator. The output responses of the proposed controller are compared amongst proportional– integral–derivative (PID), fuzzy, and adaptive fuzzy–PID Controllers. The simulation results seen between the adaptive fuzzy– based PID controller surpasses the expected results by Tr = 95.454%, Ts = 61.409% and negligible overshoot as compared to open–looped and conventional responsive controller.