A Systematic Method of Stroke Prediction Model based on Big Data and Machine Learning

V. E., R. D
{"title":"A Systematic Method of Stroke Prediction Model based on Big Data and Machine Learning","authors":"V. E., R. D","doi":"10.1109/STCR55312.2022.10009283","DOIUrl":null,"url":null,"abstract":"There is an enormous increase in number of diseases worldwide. The non-communicable diseases such as cardio vascular disease will leads to death. The second major reason of death in people worldwide occurs due to stroke. It affects any portion of brain due to interruption or reduction of Blood supply. The brain damage can be reduced if required actions taken earlier. So there is necessary requirement to build stroke predictive models. The combined techniques of Machine Learning (ML) and Deep Learning (DL) techniques play the vital role in Disease Prediction. There are many researches has been done for stroke prediction using various ML Algorithms. In order to improve accuracy, the proposed model will work on the hybrid ANNRF (Artificial Neural Network-Random Forest). The proposed method can be reached 94% in classification accuracy.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There is an enormous increase in number of diseases worldwide. The non-communicable diseases such as cardio vascular disease will leads to death. The second major reason of death in people worldwide occurs due to stroke. It affects any portion of brain due to interruption or reduction of Blood supply. The brain damage can be reduced if required actions taken earlier. So there is necessary requirement to build stroke predictive models. The combined techniques of Machine Learning (ML) and Deep Learning (DL) techniques play the vital role in Disease Prediction. There are many researches has been done for stroke prediction using various ML Algorithms. In order to improve accuracy, the proposed model will work on the hybrid ANNRF (Artificial Neural Network-Random Forest). The proposed method can be reached 94% in classification accuracy.
基于大数据和机器学习的中风预测模型系统方法
全世界的疾病数量急剧增加。心血管疾病等非传染性疾病会导致死亡。全世界人类死亡的第二大原因是中风。由于血液供应中断或减少,它影响大脑的任何部分。如果及早采取必要的措施,脑损伤是可以减轻的。因此,建立脑卒中预测模型是必要的。机器学习(ML)和深度学习(DL)技术的结合在疾病预测中起着至关重要的作用。利用各种机器学习算法进行脑卒中预测已经有了很多研究。为了提高准确率,该模型将在人工神经网络-随机森林混合模型上工作。该方法的分类准确率可达94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信