An Empirical Study of Feature Extraction Methods for Audio Classification

Charles Parker
{"title":"An Empirical Study of Feature Extraction Methods for Audio Classification","authors":"Charles Parker","doi":"10.1109/ICPR.2010.1111","DOIUrl":null,"url":null,"abstract":"With the growing popularity of video sharing web sites and the increasing use of consumer-level video capture devices, new algorithms are needed for intelligent searching and indexing of such data. The audio from these video streams is particularly challenging due to its low quality and high variability. Here, we perform a broad empirical study of features used for intelligent audio processing. We perform experiments on a dataset of 200 consumer videos over which we attempt to detect 10 semantic audio concepts.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the growing popularity of video sharing web sites and the increasing use of consumer-level video capture devices, new algorithms are needed for intelligent searching and indexing of such data. The audio from these video streams is particularly challenging due to its low quality and high variability. Here, we perform a broad empirical study of features used for intelligent audio processing. We perform experiments on a dataset of 200 consumer videos over which we attempt to detect 10 semantic audio concepts.
音频分类特征提取方法的实证研究
随着视频共享网站的日益普及和消费者级视频捕捉设备的日益使用,需要新的算法来对这些数据进行智能搜索和索引。来自这些视频流的音频由于其低质量和高可变性而特别具有挑战性。在这里,我们对用于智能音频处理的特征进行了广泛的实证研究。我们在200个消费者视频的数据集上进行实验,我们试图检测10个语义音频概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信