Machine Vision System of Emergency Vehicle Detection System Using Deep Transfer Learning

Kim Carol Maligalig, Albertson D. Amante, Ryan R. Tejada, Roger S. Tamargo, Al Ferrer Santiago
{"title":"Machine Vision System of Emergency Vehicle Detection System Using Deep Transfer Learning","authors":"Kim Carol Maligalig, Albertson D. Amante, Ryan R. Tejada, Roger S. Tamargo, Al Ferrer Santiago","doi":"10.1109/DASA54658.2022.9765002","DOIUrl":null,"url":null,"abstract":"Accidents can happen at any time and in any location, so emergency vehicles are essential in any emergency or life-threatening circumstance. However, due to lots of people owning cars, traffic jam is a severe problem in many cities. These traffic jams have an impact on emergency vehicles, particularly ambulances, as well as other vehicles such as fire trucks and police cars. The purpose of this research is to develop an emergency vehicle detection system that will assist law enforcement in mandating traffic when emergency vehicles are on the road. The researcher used deep learning, specifically the YOLov3 technique in developing the detection system wherein it will utilize CNN in implementation. The highest mAP value out of 25 models was obtained by the detection system is 98.78% by model 21.","PeriodicalId":231066,"journal":{"name":"2022 International Conference on Decision Aid Sciences and Applications (DASA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Decision Aid Sciences and Applications (DASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASA54658.2022.9765002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accidents can happen at any time and in any location, so emergency vehicles are essential in any emergency or life-threatening circumstance. However, due to lots of people owning cars, traffic jam is a severe problem in many cities. These traffic jams have an impact on emergency vehicles, particularly ambulances, as well as other vehicles such as fire trucks and police cars. The purpose of this research is to develop an emergency vehicle detection system that will assist law enforcement in mandating traffic when emergency vehicles are on the road. The researcher used deep learning, specifically the YOLov3 technique in developing the detection system wherein it will utilize CNN in implementation. The highest mAP value out of 25 models was obtained by the detection system is 98.78% by model 21.
基于深度迁移学习的应急车辆检测机器视觉系统
事故随时随地都可能发生,因此在任何紧急情况或危及生命的情况下,应急车辆都是必不可少的。然而,由于许多人拥有汽车,交通堵塞在许多城市是一个严重的问题。这些交通堵塞对紧急车辆,特别是救护车,以及消防车和警车等其他车辆产生了影响。本研究的目的是开发一个紧急车辆检测系统,当紧急车辆在道路上时,该系统将协助执法部门强制交通。研究人员在开发检测系统时使用了深度学习,特别是YOLov3技术,其中将利用CNN实现。25个模型中,模型21的mAP值最高,为98.78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信