Life Style Related Risk Association Mining

E. Effiok, E. Liu, Jon Hitchcock
{"title":"Life Style Related Risk Association Mining","authors":"E. Effiok, E. Liu, Jon Hitchcock","doi":"10.1109/IINTEC.2018.8695295","DOIUrl":null,"url":null,"abstract":"IoT application in health care provides ways to monitor and collect health related biomarkers, in particular, life-style related data, by recording and analyzing long-term data, to provide insight to patients’ status. In order to make most use of this application, linking the collected patients’ data with a disease predictive model will generate a personalized disease progression and predictions. It is also important to understand one’s health risks in order to benefit from new research about specific diseases and plan for preventive monitoring. Risk factors for a disease are results of various medical researches. In this paper, we propose an approach for risk factor selection and mining.","PeriodicalId":144578,"journal":{"name":"2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IINTEC.2018.8695295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

IoT application in health care provides ways to monitor and collect health related biomarkers, in particular, life-style related data, by recording and analyzing long-term data, to provide insight to patients’ status. In order to make most use of this application, linking the collected patients’ data with a disease predictive model will generate a personalized disease progression and predictions. It is also important to understand one’s health risks in order to benefit from new research about specific diseases and plan for preventive monitoring. Risk factors for a disease are results of various medical researches. In this paper, we propose an approach for risk factor selection and mining.
生活方式相关风险关联挖掘
物联网在医疗保健中的应用,通过记录和分析长期数据,提供了监测和收集与健康相关的生物标志物,特别是与生活方式相关的数据的方法,以提供对患者状态的洞察。为了充分利用这一应用程序,将收集到的患者数据与疾病预测模型联系起来,将产生个性化的疾病进展和预测。了解自己的健康风险也很重要,这样才能从有关特定疾病的新研究中获益,并制定预防监测计划。一种疾病的危险因素是各种医学研究的结果。本文提出了一种风险因素选择与挖掘的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信