Classification of Motor Imagery Tasks by means of Time-Frequency-Spatial Analysis for Brain-Computer Interface Applications

L. Qin, B. Kamousi, Z.M. Liu, L. Ding, B. He
{"title":"Classification of Motor Imagery Tasks by means of Time-Frequency-Spatial Analysis for Brain-Computer Interface Applications","authors":"L. Qin, B. Kamousi, Z.M. Liu, L. Ding, B. He","doi":"10.1109/CNE.2005.1419636","DOIUrl":null,"url":null,"abstract":"We have developed new algorithms for classification of motor imagery tasks for brain-computer interface applications by analyzing single trial scalp EEG signals in the time-, frequency-, and space-domains. These new algorithms have been evaluated using a publically available dataset. The results are promising, suggesting that the newly developed algorithms may provide useful alternative for noninvasive brain-computer interface applications","PeriodicalId":113815,"journal":{"name":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2005.1419636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We have developed new algorithms for classification of motor imagery tasks for brain-computer interface applications by analyzing single trial scalp EEG signals in the time-, frequency-, and space-domains. These new algorithms have been evaluated using a publically available dataset. The results are promising, suggesting that the newly developed algorithms may provide useful alternative for noninvasive brain-computer interface applications
基于时频空分析的运动想象任务分类在脑机接口中的应用
我们通过分析单次头皮EEG信号的时间、频率和空间域,开发了用于脑机接口应用的运动图像任务分类的新算法。这些新算法已经使用公开可用的数据集进行了评估。结果很有希望,表明新开发的算法可能为非侵入性脑机接口应用提供有用的替代方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信