AdaBoost performance improvement using PSO algorithm

Mostafa Mohammadpour, M. Ghorbanian, S. Mozaffari
{"title":"AdaBoost performance improvement using PSO algorithm","authors":"Mostafa Mohammadpour, M. Ghorbanian, S. Mozaffari","doi":"10.1109/IKT.2016.7777785","DOIUrl":null,"url":null,"abstract":"An improved AdaBoost algorithm based on optimizing search in sample space is presented. Working with data in large scale need more time to compare samples for finding a threshold in the AdaBoost algorithm when using decision stump as a weak classifier. We used PSO algorithm to evolve and select best feature in sample space for a weak classifier to reduce time. The experiment results show that with applying PSO to the decision stump, time consuming of the AdaBoost algorithm has been improved than base Adaboost. As a result, using evolutionary algorithms in such problems which have large scale, can reduce searching time for finding best solution and increase performance of algorithms in hand.","PeriodicalId":205496,"journal":{"name":"2016 Eighth International Conference on Information and Knowledge Technology (IKT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2016.7777785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An improved AdaBoost algorithm based on optimizing search in sample space is presented. Working with data in large scale need more time to compare samples for finding a threshold in the AdaBoost algorithm when using decision stump as a weak classifier. We used PSO algorithm to evolve and select best feature in sample space for a weak classifier to reduce time. The experiment results show that with applying PSO to the decision stump, time consuming of the AdaBoost algorithm has been improved than base Adaboost. As a result, using evolutionary algorithms in such problems which have large scale, can reduce searching time for finding best solution and increase performance of algorithms in hand.
AdaBoost性能改进使用粒子群算法
提出了一种基于样本空间优化搜索的改进AdaBoost算法。在AdaBoost算法中,当使用decision stump作为弱分类器时,在处理大规模数据时需要花费更多的时间来比较样本以寻找阈值。我们使用粒子群算法在样本空间中进化和选择弱分类器的最佳特征,以减少时间。实验结果表明,将粒子群算法应用于决策残桩后,AdaBoost算法的耗时比base AdaBoost算法有所改善。因此,在这类大规模问题中使用进化算法,可以减少寻找最优解的搜索时间,提高现有算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信