BotRGCN: Twitter bot detection with relational graph convolutional networks

Shangbin Feng, Herun Wan, Ningnan Wang, Minnan Luo
{"title":"BotRGCN: Twitter bot detection with relational graph convolutional networks","authors":"Shangbin Feng, Herun Wan, Ningnan Wang, Minnan Luo","doi":"10.1145/3487351.3488336","DOIUrl":null,"url":null,"abstract":"Twitter bot detection is an important and challenging task. Existing bot detection measures fail to address the challenge of community and disguise, falling short of detecting bots that disguise as genuine users and attack collectively. To address these two challenges of Twitter bot detection, we propose BotRGCN, which is short for Bot detection with Relational Graph Convolutional Networks. BotRGCN addresses the challenge of community by constructing a heterogeneous graph from follow relationships and applies relational graph convolutional networks. Apart from that, BotRGCN makes use of multi-modal user semantic and property information to avoid feature engineering and augment its ability to capture bots with diversified disguise. Extensive experiments demonstrate that BotRGCN outperforms competitive baselines on a comprehensive benchmark TwiBot-20 which provides follow relationships.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Twitter bot detection is an important and challenging task. Existing bot detection measures fail to address the challenge of community and disguise, falling short of detecting bots that disguise as genuine users and attack collectively. To address these two challenges of Twitter bot detection, we propose BotRGCN, which is short for Bot detection with Relational Graph Convolutional Networks. BotRGCN addresses the challenge of community by constructing a heterogeneous graph from follow relationships and applies relational graph convolutional networks. Apart from that, BotRGCN makes use of multi-modal user semantic and property information to avoid feature engineering and augment its ability to capture bots with diversified disguise. Extensive experiments demonstrate that BotRGCN outperforms competitive baselines on a comprehensive benchmark TwiBot-20 which provides follow relationships.
BotRGCN: Twitter机器人检测与关系图卷积网络
Twitter机器人检测是一项重要且具有挑战性的任务。现有的机器人检测措施无法解决社区和伪装的挑战,无法检测伪装成真实用户并集体攻击的机器人。为了解决Twitter机器人检测的这两个挑战,我们提出了BotRGCN,它是使用关系图卷积网络进行机器人检测的缩写。BotRGCN通过从关注关系中构造异构图,并应用关系图卷积网络来解决社区的挑战。除此之外,BotRGCN利用多模态用户语义和属性信息来避免特征工程,增强其捕获具有多种伪装的机器人的能力。广泛的实验表明,BotRGCN在提供跟随关系的综合基准twitbot -20上优于竞争基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信