Application of sparse matrix solvers as effective preconditioners

D. P. Young, R. Melvin, F. Johnson, J. Bussoletti, L. Wigton, S. Samant
{"title":"Application of sparse matrix solvers as effective preconditioners","authors":"D. P. Young, R. Melvin, F. Johnson, J. Bussoletti, L. Wigton, S. Samant","doi":"10.1137/0910072","DOIUrl":null,"url":null,"abstract":"In this paper the use of a new out-of-core sparse matrix package for the numerical solution of partial differential equations involving complex geometries arising from aerospace applications is discussed. The sparse matrix solver accepts contributions to the matrix elements in random order and assembles the matrix using fast sort/merge routines. Fill-in is reduced through the use of a physically based nested dissection ordering. For very large problems a drop tolerance is used during the matrix decomposition phase. The resulting incomplete factorization is an effective preconditioner for Krylov subspace methods, such as GMRES. Problems involving 200,000 unknowns routinely are solved on the Cray X-MP using 64MW of solid-state storage device (SSD).","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In this paper the use of a new out-of-core sparse matrix package for the numerical solution of partial differential equations involving complex geometries arising from aerospace applications is discussed. The sparse matrix solver accepts contributions to the matrix elements in random order and assembles the matrix using fast sort/merge routines. Fill-in is reduced through the use of a physically based nested dissection ordering. For very large problems a drop tolerance is used during the matrix decomposition phase. The resulting incomplete factorization is an effective preconditioner for Krylov subspace methods, such as GMRES. Problems involving 200,000 unknowns routinely are solved on the Cray X-MP using 64MW of solid-state storage device (SSD).
稀疏矩阵解算器作为有效预调节器的应用
本文讨论了一种新的核外稀疏矩阵包在航空航天应用中涉及复杂几何的偏微分方程数值解中的应用。稀疏矩阵求解器以随机顺序接受对矩阵元素的贡献,并使用快速排序/合并例程组装矩阵。通过使用基于物理的嵌套解剖排序来减少填充。对于非常大的问题,在矩阵分解阶段使用跌落容限。所得到的不完全分解是Krylov子空间方法(如GMRES)的有效前提条件。在Cray X-MP上使用64MW的固态存储设备(SSD)常规解决了涉及200,000个未知数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信