{"title":"Flexible hardware for fingerprint Image Processing","authors":"F. Fons, M. Fons, E. Cantó, M. López","doi":"10.1109/RME.2007.4401839","DOIUrl":null,"url":null,"abstract":"Reconfigurable computing adds to the traditional hardware/software design flow a new degree of freedom in the development of electronic systems. In a system-on-chip platform, the fact that a MCU makes evolve at run-time a hardware coprocessor mapped on a FPGA, to execute thus different compute-intensive tasks in the same silicon-area, results in a clear earned value applied to the system implementation: the low-cost reached through the resources time-multiplexing. Under that approach, this work merges both reconfigurable computing and HW/SW co-design technologies to develop an efficient architecture of an automatic fingerprint authentication system (AFAS) oriented to real-time embedded applications.","PeriodicalId":118230,"journal":{"name":"2007 Ph.D Research in Microelectronics and Electronics Conference","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Ph.D Research in Microelectronics and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RME.2007.4401839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Reconfigurable computing adds to the traditional hardware/software design flow a new degree of freedom in the development of electronic systems. In a system-on-chip platform, the fact that a MCU makes evolve at run-time a hardware coprocessor mapped on a FPGA, to execute thus different compute-intensive tasks in the same silicon-area, results in a clear earned value applied to the system implementation: the low-cost reached through the resources time-multiplexing. Under that approach, this work merges both reconfigurable computing and HW/SW co-design technologies to develop an efficient architecture of an automatic fingerprint authentication system (AFAS) oriented to real-time embedded applications.