Inequalities for weighted spaces with variable exponents

P. Rocha
{"title":"Inequalities for weighted spaces with variable exponents","authors":"P. Rocha","doi":"10.7153/mia-2023-26-33","DOIUrl":null,"url":null,"abstract":"In this article we obtain an\"off-diagonal\"version of the Fefferman-Stein vector-valued maximal inequality on weighted Lebesgue spaces with variable exponents. As an application of this result and the atomic decomposition developed in [12] we prove, for certain exponents $q(\\cdot)$ in $\\mathcal{P}^{\\log}(\\mathbb{R}^{n})$ and certain weights $\\omega$, that the Riesz potential $I_{\\alpha}$, with $0<\\alpha<n$, can be extended to a bounded operator from $H^{p(\\cdot)}_{\\omega}(\\mathbb{R}^{n})$ into $L^{q(\\cdot)}_{\\omega}(\\mathbb{R}^{n})$, for $\\frac{1}{p(\\cdot)} := \\frac{1}{q(\\cdot)} + \\frac{\\alpha}{n}$.","PeriodicalId":122217,"journal":{"name":"Mathematical Inequalities &amp; Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities &amp; Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/mia-2023-26-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article we obtain an"off-diagonal"version of the Fefferman-Stein vector-valued maximal inequality on weighted Lebesgue spaces with variable exponents. As an application of this result and the atomic decomposition developed in [12] we prove, for certain exponents $q(\cdot)$ in $\mathcal{P}^{\log}(\mathbb{R}^{n})$ and certain weights $\omega$, that the Riesz potential $I_{\alpha}$, with $0<\alpha
变指数加权空间的不等式
本文给出了变指数加权Lebesgue空间上Fefferman-Stein向量值极大不等式的一个“非对角线”版本。作为这一结果和[12]中开发的原子分解的一个应用,我们证明了对于$\mathcal{P}^{\log}(\mathbb{R}^{n})$中的某些指数$q(\cdot)$和某些权值$\omega$,对于$\frac{1}{p(\cdot)} := \frac{1}{q(\cdot)} + \frac{\alpha}{n}$, Riesz势$I_{\alpha}$可以用$0<\alpha
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信