Development of Yield Forecast Models for Vegetables Using Artificial Neural Networks: the Case of Chilli Pepper

Choonsoo Lee, Yang Sung-Bum
{"title":"Development of Yield Forecast Models for Vegetables Using Artificial Neural Networks: the Case of Chilli Pepper","authors":"Choonsoo Lee, Yang Sung-Bum","doi":"10.11625/KJOA.2017.25.3.555","DOIUrl":null,"url":null,"abstract":"This study suggests the yield forecast model for chilli pepper using artificial neural network. For this, we select the most suitable network models for chilli pepper’s yield and compare the predictive power with adaptive expectation model and panel model. The results show that the predictive power of artificial neural network with 5 weather input variables (temperature, precipitation, temperature range, humidity, sunshine amount) is higher than the alternative models. Implications for forecasting of yields are suggested at the end of this study.","PeriodicalId":448025,"journal":{"name":"Korean Journal of Organic Agricultue","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Organic Agricultue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11625/KJOA.2017.25.3.555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study suggests the yield forecast model for chilli pepper using artificial neural network. For this, we select the most suitable network models for chilli pepper’s yield and compare the predictive power with adaptive expectation model and panel model. The results show that the predictive power of artificial neural network with 5 weather input variables (temperature, precipitation, temperature range, humidity, sunshine amount) is higher than the alternative models. Implications for forecasting of yields are suggested at the end of this study.
基于人工神经网络的蔬菜产量预测模型的建立——以辣椒为例
本研究提出了一种基于人工神经网络的辣椒产量预测模型。为此,我们选择了最适合辣椒产量的网络模型,并与自适应期望模型和面板模型的预测能力进行了比较。结果表明,人工神经网络对5个天气输入变量(温度、降水、温度范围、湿度、日照量)的预测能力高于备选模型。在本研究的最后,提出了对产量预测的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信