Three-Step Optimization Method Based on Posteriori Satisfying Degree for Fuzzy Multiple Objective Optimization

Chaofang Hu, Na Wang
{"title":"Three-Step Optimization Method Based on Posteriori Satisfying Degree for Fuzzy Multiple Objective Optimization","authors":"Chaofang Hu, Na Wang","doi":"10.1109/ICCASE.2011.5997701","DOIUrl":null,"url":null,"abstract":"A three-step satisfying method based on posteriori satisfying degree is proposed for fuzzy multiple objective optimization problem. Firstly, the uniformly distributed Pareto optimal set is acquired by the multiple objective genetic algorithm. Then, the eliminating optimization method is presented to reduce this set to the M-Pareto optimal set. Finally, the fuzzy mean clustering with the validity criteria is used to classify the obtained set to construct the representative M-Pareto optimal subset such that DM can choose the preferred result easily. The numerical example shows the power of the proposed method.","PeriodicalId":369749,"journal":{"name":"2011 International Conference on Control, Automation and Systems Engineering (CASE)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Control, Automation and Systems Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCASE.2011.5997701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A three-step satisfying method based on posteriori satisfying degree is proposed for fuzzy multiple objective optimization problem. Firstly, the uniformly distributed Pareto optimal set is acquired by the multiple objective genetic algorithm. Then, the eliminating optimization method is presented to reduce this set to the M-Pareto optimal set. Finally, the fuzzy mean clustering with the validity criteria is used to classify the obtained set to construct the representative M-Pareto optimal subset such that DM can choose the preferred result easily. The numerical example shows the power of the proposed method.
基于后验满足度的模糊多目标优化三步优化方法
针对模糊多目标优化问题,提出了一种基于后验满意度的三步满足方法。首先,采用多目标遗传算法求出均匀分布Pareto最优集;然后,提出消去优化方法,将该集合约简为M-Pareto最优集。最后,利用具有有效性准则的模糊均值聚类对得到的集合进行分类,构造具有代表性的M-Pareto最优子集,使DM能够方便地选择优选结果。算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信